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The miniaturization of droplet manipulation methods has led to
drops being proposed as microreactors in many applications of
biology and chemistry. In parallel, microfluidic methods have
been applied to generate monodisperse emulsions for applica-
tions in the pharmaceuticals, cosmetics, and food industries. To
date, microfluidic droplet production has been dominated by
a few designs that use hydrodynamic forces, resulting from the
flowing fluids, to break drops at a junction. Here we present
a platform for droplet generation and manipulation that does
not depend on the fluid flows. Instead, we use devices that
incorporate height variations to subject the immiscible interfaces
to gradients of confinement. The resulting curvature imbalance
along the interface causes the detachment of monodisperse
droplets, without the need for a flow of the external phase. Once
detached, the drops are self-propelled due to the gradient of
surface energy. We show that the size of the drops is determined
by the device geometry; it is insensitive to the physical fluid
properties and depends very weakly on the flow rate of the
dispersed phase. This allows us to propose a geometric theoret-
ical model that predicts the dependence of droplet size on the
geometric parameters, which is in agreement with experimental
measurements. The approach presented here can be applied in
a wide range of standard applications, while simplifying the
device operations. We demonstrate examples for single-droplet
operations and high-throughput generation of emulsions, all of
which are performed in simple and inexpensive devices.

step emulsification | surface tension

The production of droplets in microchannels is generally
performed in one of three dominant geometries: T-junctions

(1), flow-focusing devices (2), and coflow devices (3). Since the
initial introduction of these devices, many studies have focused
on understanding their underlying physics (see refs. 4–6 for
recent reviews), as well as on extending their range of opera-
tion, for instance by parallelizing the injection nozzles to in-
crease the total throughput (7, 8) or to generate drops with
variable contents (9, 10). In parallel to such mechanical studies,
a large body of recent work has dealt with applications of
droplet methods to biological or chemical analysis, where each
droplet is considered as a mobile microreactor (see, e.g., refs.
11–13 for reviews).
All three methods allow the production of a well-calibrated train

of droplets by continuously injecting the droplet and carrier fluids
through a well-designed microfluidic geometry. At the junction
where the fluids meet, drops detach due to the hydrodynamic forces
that are determined by a coupling of the flow rates with the geo-
metric parameters and fluid properties. This fixes the size, volume
fraction, transport velocity, and production frequency of the drop-
lets (4–6). It is not possible to vary one of these parameters without
affecting the others, except by using active external forcing (14–17).
This contrasts with nonmicrofluidic methods to produce drops,

such as micropipetting or ink-jet printing. In these methods, only
the dispersed phase is injected and the drop detachment is due to
a local loss of equilibrium between the force due to surface tension
and a body force: weight or inertia, respectively. The simplicity of
the physical mechanisms of these methods yields a high degree of
flexibility and stability, which explains their widespread use from

the production of a single drop on demand to highly parallel au-
tomated platforms. However, these techniques cannot be applied
atmicrofluidic scales, because body forces become negligible as the
drop size decreases. Instead, the flow behavior in microchannels is
usually dominated by surface tension and viscous effects.
In this context, gradients of surface energy were recently shown

to resemble gradients of gravitational potential energy (18). These
surface energy gradients, which were produced by local variations
in drop confinement, could apply sufficient forces to guide or trap
drops using microfabricated grooves, which were called “rails” and
“anchors” for guides and traps, respectively (19). We now address
the question of whether gradients of confinement alone are suffi-
cient to generate microfluidic droplets, to mimic the behavior of
a pipette at microfluidic scales.

Producing Drops of Controlled Size
We address this question using the device sketched in Fig. 1A,
which provides a constant confinement gradient in a microfluidic
chamber. It consists of an inlet channel of rectangular cross-section
that leads to a wide reservoir whose top and bottom walls can be
inclined at an angle α (see SIMaterials andMethods and Fig. S1 for
microfabrication details). The device is initially filled with the
liquid that will form the continuous phase and its surface is treated
to provide good wetting for this liquid. The second fluid is then
injected into the reservoir through the inlet channel. If the top and
bottom walls of the reservoir are parallel, there is no gradient of
confinement and a circular tongue grows indefinitely into the
reservoir and does not break off (Fig. 1B).
This is not the case when the ceiling is inclined with respect to

the floor, even for a small inclination angle α≈ 18, as illustrated in
Fig. 1 C–E. In this case, the thread expands into an elongated
tongue upon entering into the reservoir. The tongue’s equivalent
radius R=

ffiffiffiffiffiffiffiffiffi
A=π

p
, where A is the projected surface area, grows

until it reaches a critical value R*. At this point the thread locally
forms a neck (Fig. 1D) that shrinks before suddenly pinching off,
thus liberating a droplet of radiusRd. The drop then spontaneously
moves away from the nozzle (Fig. 1E). This scenario is generic to
all of the sloped nozzles that we have investigated, spanning angles
in the range 0:58< α< 4:58, widths from 100<w< 500 μm, oper-
ated at flow rates Q= 0:04–40 μL/min. A phase diagram of the
drop pinch-off is illustrated by Movie S1.

Physical Mechanism for Droplet Breakup
The physical mechanism behind the droplet breakup originates
from the Laplace pressure jump, which locally relates the mean
curvature C of an interface to the difference between the inner and
outer pressure fields, pi and po, through the interfacial tension
γ: pi − po = γC. In the quasi-static case, i.e., when pressure variations
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due to flow can be neglected, the pressures pi and po are constant in
each of the phases. This fixes the curvature thatmust be adopted by
the thread in the inlet channel, particularly in the gutters that
separate the dispersed phase from the channel walls in the corners
of the rectangle (20, 21). The Laplace equation therefore implies
that the curvature of the thread in the gutters must adapt to match
the mean curvature of the tongue in the reservoir. However, its
ability to adjust is limited by the confinement because increasing
the radius of curvature r of the gutters beyond h0=2 leads to the
unphysical situation of a kinked interface at the channel wall, as
shown by Fig 1F. This fixes a minimum C* for the curvature in the
inlet channel: C*= 2=h0.
In the reservoir, the curvature decreases as the tongue grows.

When the floor and ceiling are parallel, the quasi-static shape of
the tongue is a circular pancake of radius R and curvature
C= 2=h0 + π=4R (22). Although C decreases as R increases, it
never becomes smaller than C*, meaning that the critical state
for the thread is never reached. This contrasts with the case
of a sloped reservoir for which the depth of the tongue also
increases as it grows, leading to a further decrease in mean cur-
vature. In this case the tongue adopts the shape of a 2D pendant
drop, to equilibrate the in-plane and transverse curvatures in the
reservoir (see Materials and Methods for model derivation), and C
drops below 2=h0 when the tongue reaches the critical size

R*≈ 0:44
"
1+ 0:1

ffiffiffiffiffiffiffiffiffiffi
tanα
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h0

#
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When R>R*, the curvature of the thread in the inlet channel
cannot decrease to the value imposed by the tongue. TheLaplace law
then implies a lower pressure of the continuous phase in the gutters
than in the reservoir. This drives a reverse flow into the gutters and
leads to the necking of the thread upstreamof the nozzle. Finally, the
thread ruptures when it locally thins to a cylinder of diameter
wm = h0, due to the Rayleigh–Plateau instability (23).
This breakup mechanism also explains the droplet formation

at a step change in the microchannel depth, known as step
emulsification (24–27). As in those cases of a sudden step, the size
of the drop that is formed decreases linearly with the channel
height, which allows micrometer-scale droplets to be reached by
using equivalently thin channels (24, 26). In contrast, however, the
value of the slope here provides an additional control parameter
to tune the drop size. It is also responsible for the spontaneous
transport of the drops away from the nozzle toward regions of
greater depth. In our experiments, we have observed that this
reduces the interactions between successive drops and leads to
improved control of the droplet size (27).
The analysis leading to Eq. 1 predicts that the drop size should

decrease for increasing α. This is verified in Fig. 2A, which shows
drops being produced with four different slopes. Eq. 1, however,
underestimates Rd (Fig. 2B, solid line), because it predicts only the
critical value R* at which the necking is initiated. In particular, it
fails to consider the volume of liquid from the neck that is absorbed
by the droplet. Given that this additional volume is proportional to
w, Eq. 1 can be modified through an empirical correction with
a single fitting prefactor, which yields

Re
d ≈ 0:44

"
1+ 2:2
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This expression for the radius shows excellent agreement with
the measurements of Rd in our devices, as shown by the dashed
line in Fig. 2B.
Eqs. 1 and 2 highlight the peculiarity of this method of droplet

production, because they predict that neither γ nor other fluid
properties have any influence on the drop size. This is tested by
varying the fluid pairs, as shown in Fig. 2C, where the sizes of
water drops in oil, oil drops in water, and air bubbles in water are
plotted for different flow rates (see also Fig. S2 for different
slopes). The drop and bubble sizes are indeed indistinguishable

from each other at the low flow rates, for which the quasi-static
approximation holds.
These experiments also reveal that Q has only a small in-

fluence on Rd: a 1,000-fold increase in flow rate barely doubles
the value of Rd for the liquid drops and increases the gas bubble
radius only by about 25%. Hence, although the flow in the inlet
channel leads to a viscous pressure drop, it only weakly perturbs
the quasi-static curvature argument presented above. More-
over, the radii of the first few drops are within 5% of the long-
time average and the steady-state polydispersity index of the
produced emulsions is as small as 0.1%, an order of magnitude
better than other microfluidic systems (3) (histogram in Fig.
S3). Such stability in droplet size can be intuitively understood
by recalling that the drop size is determined by the geometry,
which is invariant throughout the experiment. This contrasts
with methods where the drop size depends on the local veloc-
ities of the inner and outer fluids, which go through large
fluctuations initially and until the flows have reached a statisti-
cal steady state. The insensitivity of the drop production to the
flow rate implies that the method can be applied in different
regimes. Below we explore the extreme cases, corresponding
first to the production of a single drop on demand and then to
the high-throughput production of emulsions.

Reactions on Demand in Single Droplets
The first application of this method is to generate individual
droplets on demand to perform controlled chemical reactions.
The aim here may be to test an unknown sample vs. a range of
substrates or concentrations, to verify the sample contents. For

α 

w 

reservoir 

 tongue 

thread gutters 

A 

h 0 

C

D

E
droplet 

neck 

w m 

A 

x y 
z 

B

F 

α = 1.2°

α = 0°

C > C   : stable * 

C = C   : critical * 

C < C   : unphysical * 

h 0 

w 

r>h  /2 
0 

r=h  /2 
0 

r<h  /2 
0 

F 
p o p  = p  + γ/r i o 

1 mm 

1 mm 

Fig. 1. Device geometry and mechanism for drop formation through a
confinement gradient. (A) Three-dimensional sketch of a device during
operation. The dispersed phase is pushed through the inlet channel (width
w and height h0) into a wide reservoir containing a stationary continuous
phase. The top wall of the reservoir is inclined at an angle α. Fluid from the
continuous phase remains in the corners of the inlet channel, forming
gutters connected to the reservoir. (B) For a flat reservoir (α= 08), the cir-
cular tongue grows indefinitely without detaching. (C–E ) Even a small
slope (α= 1:28) leads to a modification of the tongue shape and to a drop
detaching. (C ) A tongue of water in oil has a projected surface area A. (D)
A neck appears in the inlet channel and its width wm decreases in time. (E )
The thread ruptures, when wm =h0, releasing a self-propelled droplet. (F )
Cross-sectional shape of the confined thread in the inlet channel for dif-
ferent imposed C. If C> C*, the interface flattens against all four walls
and the gutter radius of curvature r ≡ 1=C. For C= C*, r =h0=2: The inner
fluid is tangent to the side walls. When C< C*, the shape of the interface
is unphysical. The curvature in this case must adjust in the out-of-plane
direction.
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this, independent parallel channels can lead to a single test region
where two rails are etched in the sloped surface to guide the drops
toward an anchor where they meet and react together.
Here we demonstrate the proof of principle with a single re-

action, where two aqueous drops containing different reagents are

formed from two independent inlets (Fig. 3). The drops are
produced by a programmable syringe pump that injects 170 nL
into each nozzle and stops; the rest of the experiment takes place
without any imposed flow. Each droplet detaches and is propelled
by the confinement gradient while being guided toward the central
anchor site by an oblique rail. Although the two drops have dif-
ferent surface tensions due to the interactions between the
chemicals and the surfactant, they are equally guided by the rails
and only the speed at which they travel differs. The faster drop is
trapped in the anchor and waits until the slower one arrives, at
which point the conjugate action of the slope and rails presses the
two drops together and leads to coalescence, initiating the
chemical reaction.
Here, the anchor is designed to be sufficiently strong to hold

the merged droplet in place, thus allowing long-term observation
of the reaction product. Although the operation of this device is
slow compared with the state of the art in microchannels, the
throughput can be improved by optimizing the geometry, for
instance by using smaller droplets and larger slopes, or by relying
on active merging techniques (5).
Nevertheless, the current example provides similar functionality

and performance to those of digital microfluidic devices: a reaction
is triggered on demand in a few seconds and by using submicroliter
sample volumes. In contrast with those devices, however, the
operations here are hard wired, therefore not requiring any pro-
gramming. Furthermore, the current device is made of polymer
with no active elements, making it inexpensive and easy to repli-
cate using molding methods. As such, it is well suited for diag-
nostics or other applications that require a robust, disposable,
drop-on-demand platform and for which digital microfluidics are
prohibitively complex.

High-Throughput Emulsification
The throughput of drop production can be increased by paral-
lelizing the nozzles. This is first demonstrated in Fig. 4A (Movie
S2 and Fig. S4), where an emulsion of drops with different dyes is
produced by mixing the three primary colors two-by-two up-
stream of the production nozzles. Even though the dyes interact
with the surfactants to change the surface tension across the
nozzles, the drop size is monodisperse. Moreover, the device can
be operated at a wide range of flow rates (hereQ was varied from
1 to 100 μL/min) by simply changing the inlet flow rates. Because
only the dispersed phase must be pumped, the throughput can be
changed instantaneously and without affecting the drop size,
unlike in previously reported devices where the flow rates must
be reequilibrated (7, 10). Finally, note that the design and fab-
rication of the injection channels is simplified compared with
other parallel schemes (7, 8, 10), because only channels and
inlets of the dispersed phase need to be considered.
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Fig. 2. Characterization of the droplet size for one inlet geometry (h0 = 130
μm, w = 250 μm). (A) Images of oil drops in water for four different slopes,
0:58< α< 4:58. (B) Measured radii Rd (circles) compared with the predictions
of Eq. 1 (solid line) and Eq. 2 (dashed line). (C) Variation of drop radius Rd

with the flow rate Q shows a weak dependence; a 1,000-fold increase in Q at
most doubles the drop size. The different symbols correspond to different
fluid pairs: Oil in water (■;  γ = 12 mN/m), water in oil (▲;  γ = 7 mN/m), and
air in water (*;  γ = 50 mN/m). The drop size is independent of the fluid
properties at low Q.

rails

anchor

KSCN inlet

FeCl  inlet3

s2.0=ts0=t t =0.4 s

s54=ts21=ts2=t

Fig. 3. Initiating a chemical reaction with individual
droplets: At t = 0 s, two inlet channels bring aqueous
solutions of FeCl3 (dyed with yellow food coloring)
and KSCN. A programmable syringe pump injects the
two solutions at Q= 50 μL/min during 0.2 s. A single
droplet detaches from each nozzle and travels into
the reservoir, where an oblique rail guides it toward
the central anchor. The fast drop waits for the slower
one. The two collide at t = 2 s and remain pressed
together. Coalescence occurs 10 s later, initiating the
chemical reaction, which produces FeðSCNÞ2+ com-
plex (red). The coalesced drop remains at the anchor
and the reaction is monitored in time. Nozzle
dimensions: w = 200 μm, h= 130 μm. α= 1:28. (Scale
bar, 1 mm.)
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Finally, massive parallelization can be achieved to reach high-
throughput emulsification or to efficiently divide a sample into
a multitude of droplets that are held on chip. This is demonstrated
in the device in Fig. 4B–D, which contains 256 parallel nozzles that
lead to a wide central region. The device is initially filled with
the continuous phase, to which an overpressure is applied. This
inflates the reservoir and creates a slope at each of the nozzles. At
this stage, the dispersed phase is injected with a syringe pump and
divides into equal-sized droplets upon exiting the nozzles. The size
of the drops in this case is controlled by the applied overpressure
(Fig. 4E). In the example shown in Fig. 4D, an initial 5-μL sample is
dispersed into an array of 20; 000 droplets, each measuring
226± 16 pL, at a frequency of 1,470 drops/s. The drops can then be
kept on the chip or extracted through an exit in the center of the
device, as shown inMovie S3, in which case a slight external flow is
needed, as in the case of Fig. 4A.
The drop production in the above examples is determined

locally at the exit of each nozzle. This is because the outer fluid is

stationary, meaning that the pressure field is constant throughout
the reservoir into which the droplets flow. Furthermore, the flat-
tened “Hele-Shaw” geometry of the reservoir screens the effects
of each drop on its neighbors. These features allow the device to
be scaled up to a larger number of nozzles, without any funda-
mental limit, although practical limits on flow rates or device size
may become important.

Discussion
We have presented microfluidic devices to produce drops by
using the gradient of confinement due to nonparallel top and
bottom walls. In these experiments, the size of the drops is de-
termined principally by the geometry of the device, as described
by Eqs. 1 and 2. It is independent of the drop contents, even
when those contents modify the value of the surface tension or
the viscosity; this is visible in Fig. 4A, where drops of different
colors have different surface tensions but the same size. How-
ever, the velocity at which the droplets flow away from the
nozzles depends on the fluid properties, which sets a limit on the
throughput that is achievable from each nozzle.
The weak sensitivity of the drop size on the production rate

allows each nozzle to operate at a wide range of flow rates, from
producing a single drop to several drops per second. This aspect
facilitates the parallelization, because fluctuations in flow rates
between the different nozzles do not affect the emulsion
monodispersity. Indeed, the nozzles in Movie S3 start pro-
ducing droplets at different moments and do so at different
rates. Nevertheless, all of the drops have the same size, starting
from the very first drops that are produced near the top of
the image (Fig. S5).
All of these aspects distinguish the current technique from the

standard microfluidic methods for producing drops, because they
decouple the drop size from the production rate and from the
physical forces acting on the interface. In practice, they imply
that a monodisperse emulsion is obtained without any losses
from the initial sample. This is particularly important for cases
when the emulsion is kept on chip for further analysis (28, 29),
because the complete initial sample can be analyzed.
Finally, the ability to produce drops in a quiescent outer fluid

paves the way for hand-operated emulsification chips. In such
a protocol, the chip is initially filled with the outer fluid, using
a hand-held pipette. Then the dispersed phase can be injected by
hand, also using a pipette. The fluid then spontaneously breaks up
into monodisperse drops as it passes the nozzles. The manual
production of thousands of monodisperse nanoliter-scale drops is
shown in Movie S4, where the parallel device of Fig. 4B is oper-
ated by a hand-help pipette and filmed in real time. This greatly
reduces the complexity of droplet microfluidics, which should
allow its greater adoption by biologists and chemists.

Materials and Methods
Shape, Mean Curvature, and Critical Size of the Water Tongue. To relate the
curvature criteria for droplet breakup (C< 2=h0) to a critical size R* of the
tongue, a detailed description of the tongue geometry is required. To this
end, we define a function yðxÞ that describes the shape of the tongue in the
horizontal ðx; yÞ plane of the reservoir, of origin O at the injection nozzle as
sketched in Fig. 5. The function yðxÞ must verify two geometric constraints:
a continuity condition at the nozzle tip yð0Þ=w=2 and tangent continuity at
the apex of the tongue dy=dxðx = LÞ=dy=dxðy = 0Þ=∞, where L is the
length of the tongue. However, tangent continuity is not required at the
nozzle tip (x = 0) because of the sharp angle of the channel side walls.

Recalling the Laplace equation, the interface verifies

pi −po = γC; [3]

with po the pressure of the continuous phase in the reservoir, pi the pressure of
the dispersed phase in the tongue, and C the mean curvature of the free sur-
face. In a quasi-static situation for which flow-induced pressure variations are
negligible, the pressures pi and po are constants. Hence, the Laplace equation
implies that the mean curvature C is constant everywhere on the interface.

The mean curvature has two local contributions: the curvature C==ðx; yÞ of
the projected shape in the ðx; yÞ plane and the vertical transverse curvature
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Massive parallelization in an inflatable device. (B) A set of 256 parallel nozzles
of identical dimensions (h0 = 15 μm, w = 50 μm) connect the dispersed phase
channel to the central region. (C) The continuous phase in the reservoir is
pressurized using a pressure controller that leads to a roof deformation, as
illustrated in this cross-section. (D) Droplets detach from each of the nozzles
and form a monodisperse array that remains on the chip. Here, the reservoir
overpressure is 100 mbar, and the flow rate is set at Q= 20 μL/min such that
the nozzles produce 226± 16 pL droplets at a frequency of 1.5 kHz. (E) The
reservoir pressure controls inflation and as a result the drop size: inlet pres-
sures of 25, 50, 100, and 200 mbar lead to drop radii of 41, 39, 37.5, and 36.5
μm, respectively, with a size dispersion under 3%.
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C⊥ðx; yÞ. For a nonwetting tongue, the latter is constrained by the top and
bottom walls of the reservoir, of local height hðx; yÞ, with a correction that
depends on the local in-plane curvature C==ðx; yÞ to verify the condition of
constant mean curvature (22). Under these conditions,

C⊥ðx; yÞ=
2

hðx; yÞ+
$π
4
− 1

%
· C==ðx; yÞ [4]

and consequently, the mean curvature is given by

C= C⊥ðx; yÞ+ C==ðx; yÞ =
2

hðx; yÞ +
π
4
C==ðx; yÞ: [5]

Constant curvature then implies that

C==ðx; yÞ+
8
π

1
hðx; yÞ

= cst: [6]

In the case of a reservoir of constant height hðx; yÞ=h0, the in-plane
curvature is then also constant. Therefore, the tongue adopts a circular

shape at equilibrium, which is in agreement with experimental observations
as shown in Fig. 1B. Its mean curvature is given by

C= 2
h
+
π
4
1
R
: [7]

In the case of a reservoir with walls wedged at an angle α, the height of
the channel increases linearly with x from h0 at the nozzle tip: hðx; yÞ=
h0 + tanðαÞx. Assuming small height variations over the length of the tongue
(

ffiffiffiffiffiffiffiffiffiffiffiffi
tan  α

p
# 1), Eq. 6 expands and simplifies to

C==ðx; yÞ= C0== +
8
π
tanðαÞx

h2
0

; [8]

with C0== the curvature at the nozzle. This shape equation is identical
to the one describing the shape of a 2D pendant drop for which the
curvature increases linearly away from the needle tip due to gravity.
This analogy points out the existence of a characteristic length
lα =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð8  tan  αÞ

p
h0, equivalent to the classical capillary length Lc =

ffiffiffiffiffiffiffiffiffiffi
ρg=γ

p

for pendant drops.
However, whereas Lc is a function of the fluid properties (density ρ and

interfacial tension γ), the length scale lα depends entirely on the geometry of
the sloped reservoir (initial height h0 and angle α), independently of the
fluids. Consequently, the tongue shape does not depend on the fluid
properties, not even on interfacial tension, which is at the root of the shape
definition mechanism.

As a result, the droplet shape is described by a unique equation

C==
$
x; y

%
=

y0
$
1+ y92

%3=2 = C 0
== + x; [9]

once all lengths are made nondimensional by the characteristic length lα :
x = lα · x, y = lα · y, and C== = C===lα. The two geometric boundary conditions
become

y
$
x = 0

%
= w =

w
2lα

 and y9
$
y = 0

%
=∞:

Eq. 9 is a second-order differential equation in yðxÞwith two boundary
conditions and a shape parameter C 0

==, the in-plane curvature at the
nozzle. Consequently, for any value of C 0

==, there is at most one solution
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Fig. 5. Sketch of the coordinate system used to describe the tongue shape.
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of a water droplet in a reservoir of FC40 + PEG-PFPE from a nozzle whose dimensions are h0 = 130 μm, w = 250 μm, and α= 1:28. Lines are the predicted shapes
for the water tongue growing in the reservoir: Solid line, the shapes have a mean curvature C that verifies the stability criterion C> 2=h0; dashed line, the
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== vs. A=2 for five different nozzle widths w ranging from 0.2 to 1.
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for the tongue shape. Or equivalently, given a value of the tongue
nondimensional surface area A=A=l2α , there are also a unique C 0

== and
shape that verify Eq. 9. Using MatLab, we can then generate the family
of shapes the tongue takes as it grows from a nozzle as illustrated by
Fig. 6A.

These shapes can be compared with experimental observations. Fig.
6B displays nine successive images of a tongue growing at a flow rate
Q= 1 μL/min into a sloped reservoir, along with predicted shapes. A
single fitting step at t = 0 is used to produce the series of theoretical
shapes: The surface area A is extracted from the experimental image at
t = 0 and the corresponding theoretical shape is computed. The pre-
dicted time evolution of the tongue shape and surface area AðtÞ is then
obtained by assuming the tongue volume VðtÞ≈h0 ·AðtÞ increases line-
arly at the flow rate Q= 1 μL/min. Fig. 6B shows the eight predicted
geometries corresponding to the experimental time steps of the image
acquisition. Excellent agreement is observed until necking of the thread
appears after t = 1:6 s.

From Eq. 9, we also obtain numerically the relationship between C 0
== and A.

Consequently, we can identify the critical tongue surface area A* for droplet
breakup by applying the stability criterion C> 2=h0.

At the nozzle, the mean curvature is given by C= 2=h0 + π=4 · C0==, using
Eq. 5. Hence, we can rewrite the criterion as C0== > 0 in nondimensional
terms. Fig. 6C features the plots of C 0

== vs. A for five different nozzle
widths w. C 0

== always decreases below the stability threshold 0 as A
increases.

Finally, we obtain that the stability threshold is reached for

A*= 1:53+ 0:38w; [10]

which translates back to

A*= 0:60
"
1+ 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanðαÞ

p w
h0

#
h2
0

tanα
[11]

in dimensional quantities.
In terms of equivalent radius R=

ffiffiffiffiffiffiffiffiffi
A=π

p
, we find

R*= 0:44
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanðαÞ

p w
h0

r
h0ffiffiffiffiffiffiffiffiffiffiffi
tanα

p : [12]

For small angles α, this expression simplifies to

R*=0:44
"
1+ 0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanðαÞ

p w
h0

#
h0ffiffiffiffiffiffiffiffiffiffiffi
tanα

p ; [13]

by expanding the square root.
This prediction of the critical tongue size R* is in good agreement with

experimental observations as illustrated in Fig. 6B, where the theoretical
shapes that violate the stability criterion of the thread in the nozzle are shown
by a dashed line. The transition takes place between frames t = 1:6 s and t = 2 s,
which also corresponds to the appearance of a neck upstream in the nozzle.
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