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We consider a sequence of boundary-value problems for the acoustic wave equation, 
with the pressure specified on the boundary as a function of space and time, and 
simulating features of the pressure field measured just outside a turbulent shear layer 
supporting large-scale coherent structures. The boundary pressure field has the form 
of a travelling subsonic plane wave, modulated by a large-scale envelope function. 
Three models for the envelope distribution are studied in detail, and the particular 
features which they exhibit are shown to be representative of large classes of 
amplitude functions. 

We start by looking a t  the hydrodynamic near field of the boundary pressure 
fluctuations, over spatial regions throughout which the motion can be taken as 
incompressible. Very close to the boundary, the pressure fluctuations decay 
exponentially with transverse distance, while at  sufficiently large distances from the 
whole wave packet on the boundary, the pressure fluctuations have a dipole algebraic 
decay. We investigate the transition from exponential to algebraic decay, and find 
that it is effected through quite a complicated multilayer structure which depends 
crucially on the detailed form of the envelope. 

Acoustic fields are then determined both from exact solutions to the wave 
equation, and from matching arguments. In some cases, where the boundary source 
is compact, the distant acoustic fields have a simple compressible dipole type of 
behaviour. In other cases, however, when the boundary source is non-compact, the 
acoustic field has a superdirective character, the angular variation being described by 
exponentials of cosines of the angle with the streamwise direction. It is shown how 
the superdirective acoustic sources are completely compatible with the features of 
the inner incompressible field, and a criterion for the occurrence of the superdirective 
acoustic fields will be given. Superdirective fields of this kind have been observed in 
measurements by Laufer & Yen (1983) on a low-speed round jet of Mach number 0.1, 
and the general relation of our results to those experiments is explained. 

1. Introduction 
Laufer & Yen (1983) report experimental studies of the near- and far-field pressure 

fluctuations associated with a highly ordered vortex-wave structure in a round jet. 
The jet has very low Mach number (around O . l ) ,  and diameter Reynolds number 
around 5 x lo4. It emerges with a laminar exit boundary layer, and weak acoustic 
forcing, tuned to the frequency fo of maximal spatial instability of the initial shear 
layer, is used to phase-lock and organize the development of axisymmetric modes on 
the shear layer and jet column. Under the forcing, the shear layer rolls up into a 
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rather tightly wound ring vortex at  a well-defined axial location I ;  a pair of 
consecutive vortices so formed travels downstream and merges (the following vortex 
causing the preceding one to expand and decelerate, allowing the following one to 
move inside and capture it) at  axial location 11; and one or two further vortex 
pairings take place further downstream at 111, IV, etc. The spectrum of near-field 
pressure fluctuations around location I shows a pronounced spike at  frequency fo, 
with smaller spikes at  the subharmonic frequencies fl = ifo, fi = if,, etc., much 
smaller spikes at the integral harmonics 2f0, 3f0, etc. and with still weaker spikes at 
the combination frequencies (2f0 +t fo),  (3f0 -a f , ) ,  etc. The spikes are connected by a 
broadband spectrum of low energy. In the absence of forcing the spectrum is 
broadband and at  a much higher level ; forcing, even of very low amplitude, phase- 
locks the fluctuations into the fundamental and subharmonics which are the 
dominant features of the near-field spectrum. 

As one goes downstream from I, the spectral level at  fo decreases, that at fi and f2 

increases, and by I1 the spectrum is dominated by a tone at  fi, and at  I11 by a tone 
at  f2, etc. One may therefore think of the processes occurring either as suggested 
synoptically, in terms of the repeated mergings of ring vortices in a rather sudden, 
though well-defined, way, or, as suggested by the evolution of the near-field pressure 
spectrum with axial distance, in terms of a wave model in which modes with 
frequencies f o ,  fi, f 2 . .  . grow and decay with axial distance. We favour the latter, as 
more conducive to analysis, especially when it comes to calculating the sound field 
generated by the waves, and when it comes to understanding the controlling 
processes. One thing should, however, be stressed. While the ring vortices clearly do 
interact in a strong way, we do not regard the interactions between the wave 
components as significant. When viewed from the wave-theory angle, we assert that 
it is appropriate to regard each of the modes with frequencies f o ,  f,, f 2 . . .  as an 
independent linear instability of the shear layer. Certainly there is some interaction 
between the wave modes, but if this interaction were strong, it would also generate 
much more intense components at the second and third integral harmonic frequencies 
2f,, 3f0,. . . , than are seen. The processes that take place as one proceeds downstream 
may give the appearance, from the spectral shapes, of merely transferring energy 
from the fundamental fo-mode to the first subharmonic, then to the second, and so 
on. But there is no conservation of energy here, and no reason to correlate the growth 
of the fl-mode with the decay of the f,-mode; each is to be regarded as an 
independent instability mode, growing because of the basic shear-flow instability, 
decaying because of the change in the instability characteristics with downstream 
distance. This near-linear growth and decay is seen explicitly in figure 23 of Laufer 
& Yen (1983), where the response a t  a fixed frequency is shown as a function of axial 
distance and forcing level. 

Laufer & Yen (1983) found that this growth and decay of wave amplitude could 
be described by the relation 

where A, is the wavelength of the mode of frequency f,(n = 0, 1, 2 were measured), 
and Z~ the location at  which the peak amplitude of that mode is attained. Phase 
measurements were used to infer the wavelengths A,. The near-field pressures thus 
have a wave-packet form at each frequency, with a Gaussian envelope of width 2A,. 
There is, of course, not enough information from which to decide whether the 
Gaussian is really a decisively better representation than, say, one of the form 
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[l + (x~/A:)]-~ for some N -  but the consequences for the acoustic field of modelling 
the wave packet with a Gaussian, rather than algebraic, envelope are very striking 
and will receive much further comment. 

Turning now to the acoustic field, one sees in the spectra measured by Laufer & 
Yen (1983) spikes a t  all the frequencies detected in the near field, and, in particular, 
a t  fo, fi and f,. The sound fields a t  these frequencies have a most unusual directivity 
pattern; it is found for each of them that, ifM, is the phase Mach number of the mode 
concerned (about 0.5 times the jet exit Mach number for each off,,, fi, f,), then 

(1.2) < P 2 ( 0 , f , ) )  - exp POM, cos 01, 

where 8 is measured from the downstream direction. We shall refer to acoustic fields 
of this kind as superdirective. For the conditions (He - 0.1) of these experiments, the 
directivity is essentially of exponential type, and cannot be expanded in a multipole 
series (in which ( p 2 )  would involve terms of even degree in cos0). One might, of 
course, expect a directivity characterized by an ‘ antenna factor ’ such as appears in 
(1.2); after all, the wave-packet structure along the jet axis, with a Gaussian 
envelope, might well be expected to lead to the form (1.2), as indeed it does. But the 
surprising thing is that the superdirective field (1.2) is generated by a source which 
is apparently extremely small in comparison with the acoustic wavelength. For the 
axial length of the packet envelope (1.1) is essentially 2 4  a t  frequencyf,, and the 
convection Mach number is 0.5 x lo-’ for a jet Mach number of 0.1. Therefore the 
whole envelope is about 0.1 of an acoustic wavelength in axial extent, while the 
transverse extent to which significant velocity fluctuations are confined is smaller 
still, comparable with the shear-layer thickness. Regardless, then, of whether it is 
possible to predict theoretically the near-field structure observed by Laufer & Yen, 
one must ask the question, ‘How can such a small source generate a superdirective 
acoustic field ? ’, and the answer to that question is addressed in the present work. 

Parenthetically we refer to earlier work (Huerre & Crighton 1983) in which an 
attempt was indeed made to predict the near- and far-field structure of Laufer & 
Yen, as represented by (1.1) and (1.2). There we used linear spatial instability theory 
for a linearly diverging shear layer to predict a wave-amplitude variation with x of 
precisely the form (l . l) ,  namely a Gaussian envelope whose width a t  any frequency 
f is a fixed multiple of the wavelength a t  that frequency, and, using a standard 
estimate for the shear-layer growth rate, we obtained (1.1) with the 2 there replaced 
by 2.2. From these calculations it was possible to determine the radiated acoustic 
field from a straightforward application of Lighthill’s (1952) aeroacoustic theory, 
retarded-time differences along the jet axis being retained in the calculation, even 
though the axial extent of the source region appeared to be small compared with the 
wavelength of sound. Despite an apparently reasonable prediction of the near-field 
structure, we were unable to reproduce (1.2). Our result for (p’) contained an 
antenna factor of the right form, but with an underestimate of the exponent, 
exp [52M, cos 01, while we had also other terms which caused large variations of 
directivity which were not seen in the measurements. We shall return to this issue in 
a future paper with P.  A. Monkewitz ; here we are concerned only to understand how 
an apparently ‘small ’ source of suitable structure can generate a superdirective 
acoustic field -though as part of this we shall make some specific predictions about 
the decay of near-field pressure fluctuations which are in themselves interesting and 
should be capable of experimental study. 
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In $2 we study the decay of those near-field fluctuations in the context of a set of 
model problems in which the pressure p ( x ,  y, t )  in a two-dimensional unsteady flow is 
speci$ed on the boundary in wave-packet form, 

p(x, 0, t )  = A ( e x )  exp (ix-it), (1.3) 

exp (ix-it) referring to  the fast-scale oscillations, A(ex) to  slow amplitude 
modulation, with 8 Q 1.  Equation (1.3) mimics the near-field structure of the 
Laufer-Yen experiments. In  y > 0 the flow is irrotational and of small amplitude 
(there is no mean flow there) and Laplace’s equation 

governs the decay of the pressure field with y. Incompressible fluctuations are 
assumed in $2, and the effects of compressibility included in $3. Ignoring the time 
factor exp (-it) throughout, it  is clear that  sufficiently close to  the boundary y = 0, 
the decay with y is exponential, 

P(X, y) - 4 0 )  exp (ix- y), (1.5) 

and indeed such exponential decay has been seen on many occasions in experimental 
study of wave-like motions in shear layers (see, for example, Gutmark & Ho 1985; 
Lafouasse, Chan & Ho 1986). Ultimately, however, as r +. co (x = r cos 8, y = r sin 6, 
0 < 8 < R )  the field is that of a concentrated dipole whose strength Fo is the 
instantaneous force applied to  the boundary, 

with 
+m 

Fo = Jpm Afex)  eizdx. 

We are interested in the manner in which the decay changes from exponential to 
algebraic around some penetration distance - and more generally we are interested 
in the structure of solutions to (1.3) and (1.4)) for 8 1, throughout - 00 < x < + co, 
0 < y < + co. It is easy to write down, in several different forms, a general integral 
solution to the problem, and to verify the laws (1.5) and (1.6) in general. But there 
is no universal way in which the exponential-algebraic transition is achieved, and 
indeed much of the emphasis here is to show that there are a variety of completely 
different routes, for each of which there are different features in the acoustic field of 
$3. We therefore start with examples, choosing specific forms A(ex) for which the 
complete asymptotic structure of p ( x ,  y, E )  in the (2, y)-plane can be displayed. Two 
of our three examples are, naturally, the Gaussian exp ( - 2 x Z )  and the algebraic 
(1  + e2x2)-1 for A(Ex) ; the third is exp ( - ~1x1) which, although artificial near z = 0, 
gives a third asymptotic structure quite different from the other two. 

We then give a general argument for determining the ‘penetration distance’ in 
terms of properties of A(ex)  (although no detailed description of the structure in the 
(2, y)-plane seems possible), and will show that envelope functions whose Fourier 
transforms have higher-order Gaussian decay, A(K)  - exp ( -  lKlzn), with n > 2, yield 
arbitrarily large penetration distances for a fixed physical envelope width 1x1 5 e-l. 
We should also stress that the exponential decay of (1.5) does not persist in this 
simple form all the way to the penetration distance, and that distance should really 
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be thought of as (a )  the distance beyond which the ultimate dipole decay applies, and 
( b )  the distance beyond which the memory in p ( x , y )  of the phase structure 
exp (ix-it) imposed at  y = 0 is completely eradicated. 

These features are essential to an understanding of the acoustic field, in a way 
which will be explained in $3.  In $3  we shall also show that the features of the 
acoustic field are actually fully consistent with standard acoustic theory. The reason 
is that the source scale relevant to the acoustic field is not the envelope width, but 
the integral scale jT: A ( m )  exp ixdx. For a Gaussian envelope the integral scale is 
O ( S - ~ ) ,  much larger than the envelope scale because of the substantial phase 
cancellation that takes place over the envelope region 1x1 < 0ls-l) in which A is 
effectively constant. Superdirective behaviour is seen in $3  to take place when the 
integral scale is comparable with the acoustic wavelength ~ the standard condition 
- even though the apparent source size is vanishingly small on the wavelength scale. 
An alternative requirement for superdirective behaviour is deduced in 5 3 from 
matching arguments, and states that the penetration distance should be comparable 
with the wavelength; and since it is shown in $3  that the penetration distance and 
integral scale are comparable, this alternative is entirely equivalent to the standard 
condition of comparability of integral scale and wavelength. 

Section 4 deals briefly with application to the experiments of Laufer & Yen (1983). 
A more complete explanation of those experiments, including the calculation of A(€%) 
from linear and nonlinear instability theory, will be published elsewhere. 

2. Decay of incompressible pressure fluctuations 
The problem to be studied is, as explained in $ 1, defined by 

1 (2.1) 
p,,+p,,=o ( - - c o < x <  +m,y>O) ,  

P b ,  0) = A m  exp (W 
where we write ( X ,  Y )  = (ex, ey) and suppress a factor exp (-it). The general solution 
can be written 

p ( z ,  y) = S m F ( k )  exp (ikx- Jkl y) dk, (2.2) 
-03 

F(k)  = - A(ex) e-i(k-lfxdx 
2R Sm -03 

where 

and 

defines the Fourier transform d ( K )  of A ( X ) .  Thus 

or 

k - 1  
p(x ,  y ) = rrn d (7) exp (ikx - Ik( y ) dk, 

-03 
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FIGURE 1 .  Case A :  exponential A ( X ) .  

and we now choose three forms for A(X) which allow these integrals to be expressed 
in terms of known functions, and their asymptotic structure as E + 0 to be ascertained 
for all (x,y). 

Case A .  Exponential A (X) = exp ( - IXl), 

A ( K )  = [n(l +K2)]4. 
One finds, for 2 > 0, 

(2.7) 

1 
p = exptix-y-(X+iY))--exp 

2n 

plus three similar products of exponential and exponential-integral functions. 
Detailed analysis shows the following : if X = O( 1) and y = O( l ) ,  the first term, p,,  in 
(2.8), is in order of magnitude, 

p1 - e-y-x = 0 (I) ,  

while the sum, p,, of the four terms involving Ei-functions, is O(s2). However, when 
y > O ( l ) ,  p ,  is exponentially small, p ,  = O(e-l/') when Y = O( l ) ,  and then p ,  = O(c2)  
dominates. Exponential decay in y thus persists only throughout the rectangular 
domain x < O(E-~),  y < O( 1) and is immediately followed outside this domain by the 
ultimate decay 

(2.9) 

which comes from the asymptotic expansion of the Ei-functions and is in agreement 
with the general form (1.6). Here, then, exponential decay gives way to algebraic a t  
distances a little greater than one wavelength/2n away from the boundary, details 
of the transition being supplied by the Ei-functions. The situation is illustrated 
schematically in figure 1. 

Case B. A Zgebraic A ( X )  = ( 1 + X2)-l, 

2 YE2 
p - P2 - (X2 + y2) ' 

A(K) = texp(-JKI). 
One finds simply 

(2.10) 

p = -  1 exp{ - ~ ( Y - z ) }  E + $ e-'/" [I-exp{ -L(Y-I-Z) € 11 + i e - l / C  1 
(Y + 1 + LY) ' 2 (Y+1- ix )  (Y-1-ix)  

(2.11) 

but the structure represented by this is quite complicated, and indicated roughly in 
figure 2. Exponential decay persists in this case out to y = O(E-'), and 'above' this 
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FIGURE 2. Case B: algebraic A @ ) .  

level (in fact for Y > 1 + O ( e ) )  there is algebraic variation - though the algebraic 
variation itself is not of the ultimate form (1.6) until X 2  + y2 4 1. The transition from 
exponential to algebraic is effected by a boundary layer and a central zone, as 
indicated in figure 2. The central zone is of width O( 1) in the fast (2, y) variables, and 
is centred on Y = 1, X = 0. It is surrounded by a layer IY- 1) = O(s) ,  transition 
through the central zone being described by different expressions from those that 
govern transition through the surrounding layer. 

The essential contrast with Case A is that, whereas there the penetration depth for 
exponential decay was y - O( l ) ,  here it is much larger, y - O(s-'), comparable with 
the envelope scale rather than with the wavelength. 

Observe also that, whereas in the algebraic decay region for Case A one has p = 
O ( 2 )  for fixed (X, Y ) ,  here in Case B one has, again for fixed ( X ,  Y ) ,  p = O(e-'ia). 

Case C. Gaussian A ( X )  = exp ( - X 2 ) ,  

Here one finds 

p(x,y) = iexp(iz-e2z2)erfc - E  iz+- i ( 23 
++exp (iz*-E2x*2) erfc +s  iz*+- { ( 31 

= Pl+P,, 
say, with z = x+iy, z* = x-iy. For x2+y2 6 c2, 

1 -  - eiZ-c2Z2 + O(E e-1/4~2), 

while 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where the error is uniform for all x and all y 2 0. There is, therefore, certainly 
exponential decay throughout x2+y2 Q E - ~ ,  and in fact the estimate (2.14) for p ,  
holds unless 

11-22s2yl < O(E)  and le2xI < O ( E ) ,  

as can be seen by writing 
1 1 -  1 -  

y = -+-Y, x = -x, 2s2 E 8 
(2.16) 
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FIGURE 3. Case C :  Gaussian A ( X ) .  

when one has, exactly, 

(2.17) 

From (2.15) and (2.17) one sees that exponential decay persists for (x,y) 4 P ,  with 
a transition around y = 1/22 described entirely by p,. 

In  the experiments of Lafouasse et al. (1986), near-field pressure contours were 
measured for the first and second subharmonics (f, andf,), in conditions essentially 
identical to those in Laufer & Yen (1983). The appropriate value of 6 is then ( 2 7 ~ ) ~ ~  
(see $4), and one finds then that the shapes of the contours measured by Lafouasse 
et al. (1986) are quite well predicted by those of the dominant term in (2.14), namely 
hyperbolic curves e2(x2 -y2) -y = constant, with appropriate origins of (x, y). 

Equation (2.17) has exponential or algebraic behaviour depending upon the phase 
o f Z +  iy, as well as its magnitude, and the shape of the transition region is essentially 
as depicted in figure 3. The transition-region shape is found by writing down uniform 
asymptotics to (2.17) for large (x, F), and the transition takes place where 

- - 1 e -1142 exp { - (3 + iF)2} erfc { - i (Z+ iP)}. 

(2.18) 

If 6 is a coordinate normal to the lines 

2 = a e-nii4 and jj = x e-mi/4 

this requires a-1 exp = O( 1 ), (2.19) 

and thus y = O(R-'lnx). Beyond the transition region, p, and p, are comparable, 
and combine to give 

, 

(2.20) 
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which is in accord with (1.6), and has the gauge function exp (-&."), to be contrasted 
with e-l'' for Case B and e2 for Case A. 

Again we see a completely different route from exponential to algebraic decay from 
that of Cases A and B. Perhaps the most striking feature of Case C is that the 
exponential decay, and the phase structure in x which that decay carries with i t ,  persists 
to distances y - eP2 from the boundary - distances not only large compared with the 
wavelength, but large compared with the envelope scale. This is the key to 
generation of a superdirective field when compressibility is included, as will be shown 
in the next section. 

Having seen the detailed structure in three special cases, we now look a t  the 
general criterion that determines the penetration distance. The dipole expression 
(1.6) is, of course, no more than the first term in the expansion of (2.6) for large R. 
Taking a further term, we have 

(2.21) 

and the penetration distance A can be estimated as the value of R at which the 
expansion (2.21) becomes disordered. This gives 

(2.22) 

from which the estimates 

for Cases A, B, C, respectively, are immediately recovered. It also follows 
immediately that 

A N &  

whenever d ( K )  vanishes algebraically as IKl+ co, and that A - 1 whenever d ( K )  
vanishes exponentially (i.e. d ( K )  - IKIm exp (-alKl) as IKl+ co for some a > 0 and 
m 3 0). If, however, d ( K )  has higher-order Gaussian behaviour as 1K1+ co, 

A(K) - l ~ l m  exp ( - a l ~ 1 2 n ) ,  

A - c , l ,  

7 (2.23) 

and the penetration depth becomes arbitrarily large for a$xed wave envelope width (unity 
in the X-variable). The properties of the envelope function A ( X )  corresponding to 
these higher-order Gaussian transforms are not well documented, but their behaviour 
as (XI + co is easily ascertained. Taking 

A(K) = exp ( -  1 ~ 1 ~ " )  
for definiteness, we have 

say, then A €-(%-I) 

(2.24) 
J -aJ 

for X > 0, and a similar expression for X < 0. The saddle-point method can be used, 
and it is evident that this will lead to a decay like exp { -X*}, more rapid than 
simple exponential, less rapid (for n > 2) than Gaussian, and that the decay will in 
general be oscillatory rather than monotonic. 
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We have thus seen how the three cases in which the asymptotic structure over the 
whole (x, y)-plane can be delineated do in fact characterize much larger classes of 
behaviour, and we have given a general condition by which the penetration distance 
A (in (X, Y) variables) can be determined simply in terms of the behaviour of d(K) 
for large K .  

Now it  is natural to think of calculating aerodynamic sound emission from low- 
speed flows by matched expansions, with the Mach number as the small parameter. 
This will be discussed in the next section. However, as a precursor one might consider 
trying to derive the results presented above for the three special cases, using 
perturbation methods for E 6 1 that  do not rely on knowledge of the exact solution. 
This proves to be surprisingly difficult, and we cannot give a convincing 
demonstration because there is on the one hand a variety of unexpected asymptotic 
structures and on the other the difficulty of dealing simultaneously with boundary- 
layer approximations and multiple-scale expressions. 

3. Compressible fields 

replacing (2.1) is 
If the pressure fluctuations take place in static compressible fluid, the problem 

p(x, 0) = A(EZ) exp (ix). J 
Here, if a, is the sound speed and U, the convection velocity of the phase fronts 
represented by the exp (is) term, Me = U,/a, is the convection Mach number. There 
are, for low-speed shear layers, now two small parameters, Me and E ,  the latter being 
the ratio of the wavelength of the hydrodynamic boundary waves to the length of the 
wave-packet envelope in which those waves are contained. 

In place of the solution (2.5) we now have, with the same definition of d, 

where 

p(x,y) = f rmd(T)exp( ikx-yy)dk ,  k-1 
-aJ 

For x2 + y2 --f 00, use of the method of stationary phase gives 

12XM t 
p(r ,8 )  - ;(+) sinBexp(iM,r-@)A 

In the three particular cases of $2, we have the following: 

Case A .  Exponential A 

Sill 8 
[ ( 1 -M, cos e ) 2  + €21 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Regardless of the ratio E/M,  we can, for M ,  < 1, E < 1, develop this in a multipole 
series, of which the first term is an acoustic dipole, p - sin 8. There is no possibility 
of a superdirective field for exponential A .  
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Here p is exponentially small in e, rather than algebraically as in (3.5), but the field 
(3.6) will have a superdirective character provided M,/e = O( 1 )  as M, + 0 , e  + 0. This 
simply means that the envelope width 6-l and the acoustic wavelength Mi1 should 
be comparable, and for such an obviously ‘non-compact ’ source one should indeed 
expect a ‘beaming ’ or strongly directional effect not expressible in multipole terms 
(Lighthill 1978, $1.12). 

Case C. Gaussian A 

(3.7) 

Here p is even smaller (with respect to e) than in Case B, p - e-l exp ( - 1/42),  but 
again there is the possibility of a superdirective field. This requires 

Mc/e2 = O(1) (3.8) 

and allows the acoustic wavelength Mi1 to be large, O(eP2), compared with the 
envelope scale e-l. The wave packet appears to be compact, in that as M,+O its 
physical envelope scale along the boundary y = 0 is a vanishingly small fraction of 
the acoustic wavelength - and yet it has a superdirective non-multipole field a t  
infinity. 

It is possible to analyse the Gaussian for compressible flow more fully. If we write 
( ~ , g )  = (Mcx, Mcy) for the Helmholtz coordinates appropriate to the wave field, 
then for the Gaussian, equation (3.2) reads 

€ 
- 8 - l , 4 2 r m  exp(-ie2u2+iar+&-g(u2- l);)du, (3.9) 

2?& -m 

where we have taken M, = e2 for definiteness, in view of (3.8). If y > (F > 0 in the 
notation of (2.16)), we can drop the first term in the exponential, leaving the integral 
as 

F ( s , g )  = exp(iuz--y(u2-l)f+$)du. 

The contributions to F from IuI > 1 (the non-radiating wavenumber range) represent 
a field of essentially hydrodynamic type which is O ( Y - ~ )  as g+ + 00. The contribution 
from IuI < 1 gives the acoustic field 

F , ( x , ~ )  = r :exp (iuX+ig(l-u2)t+&)du, (3.10) 

in which the far-field approximation has not yet been made. This shows that when 
r = O ( E - ~ )  there is a clear interaction in (3.10) between the acoustic oscillations 
represented by the term exp [iuz+ iy( 1 - u 2 ) ~ ]  and the phase variation imposed a t  th.e 
boundary and still present in (3.10) through the term exp ($). In  the very distant 

L: 
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field, r 9 E - ~ ,  stationary phase yields (3.7) again, exp (b) giving the superdirective 
term. 

The condition (3.8), or its analogue for other A ,  is simply the requirement that the 
penetration distance be comparable with the acoustic wavelength. This can be understood 
from a matching approach. We seek to solve (3.1) by matched expansions, as M ,  -+ 
0, for various fixed relations between M ,  and E .  We need a set of coordinates to 
describe the incompressible motions, and another for the compressible solutions to 
the Helmholtz equation. Imagine M i 1  to be much larger than any length scale 
associated with the incompressible fields of $2, Mi' % 6, where S = €-'A is the 
penetration distance in the (z,y) variables. Then for the acoustic field we have to 
solve 

(3.1 1)  

with (3, q) = (M, x, M ,  y) the Helmholtz coordinates, and as (3, g) + 0, p must match 
the algebraically decaying incompressible dipole field in which p - sin 8 / r .  This can 
only be achieved i fpis  itself a compressible dipole solution, p - H~') (F)  sin8, of (3.11). 

Such an argument for the acoustic dipole nature of p will fail when M i 1  becomes 
comparable with the penetration distance S. For exponential A ( X )  this is never 
possible, for then 6 = 1 4 Mi' ,  and the field is therefore always dipole - in agreement 
with the conclusion drawn from (3.5). For algebraic A ( X )  it is possible, and there will 
be non-multipole behaviour if Mi1 6 e-l ,  while Mi1 S E - ~  is required for Gaussian 
A ( X )  - again as already deduced. The result for algebraic A ( X )  is as expected - the 
wave-packet envelope must be non-compact in the usual sense ; that for Gaussian is 
unexpected in that the wave-packet envelope remains highly compact. 

For the higher-order Gaussian behaviour, suppose that a - exp ( - B12n), as 
1K1+ 00. Then the acoustic field is of the form 

p - exp( -&)(~~exp(iM,r)s inBexp ( 2  2n-cos8 ) , (3.12) 

and is superdirective if M ,  - E~~ which, in view of (2.23), is again the condition for 
comparability of S and M;l.  

These ideas are not, however, in conflict with standard acoustic theory if the 
source scale is correctly defined -which here requires accurate allowance for phase 
cancellation effects rather than reference to the wave-packet scale alone. (We are 
indebted to a referee for pointing this out, and thereby removing a misconception on 
our part.) What matters for acoustic purposes is the integral scale I ( € ) ,  defined such 
that 

rzA(ex)e izdx  -1 - ~ ~ A ( ~ x ) e " d x ,  

as s+O, or more conveniently, such that 

l+ B (:)A (ex)  eiz dx - A(ex)  eiz dx, l: (3.13) 

for some smooth B ( 9 )  with j T z B ( Y ) d 9  = 1 and B ( 9 )  vanishing rapidly for 
191 % 1. But the left-hand side of (3.13) is 

(3.14) 
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so that (3.13) will be satisfied by 

a - - i3K [lnA(K)],--;, 
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(3.15) 

in agreement with the definition (2.22) of the penetration distance. 
As presented here, these arguments simply give the conditions under which non- 

multipole behaviour is to be expected or not, depending on the ratio of acoustic 
wavelength to the penetration distance or integral scale. They do not indicate what 
sort of far field is to be expected when it is non-multipole, but one may generally 
expect a superdirective field involving exponentials of cosines. The reason is that, 
when the acoustic wavelength exceeds 6,  the field a t  the beginning of the acoustic 
region has lost all information about the wave-phase structure which was present at 
the boundary, and remembers the boundary data only through the total force Fo 
which figures in (1.6). Consequently, the acoustic field can have no better recall of the 
boundary data, and must have a multipole character. If, on the other hand, 6 and 
Nil are comparable, the acoustic field will be driven (as in (3.10), for example) by an 
inner incompressible field which still retains some boundary-phase structure, and the 
far field will have an exponential ' antenna factor ' reflecting that structure. 

4. The Laufer-Yen experiment 
The envelope fitted by Laufer & Yen (1983) to their experimental data (for the 

fundamental and first two subharmonics) is quoted in ( l . l ) ,  and if the unit of length 
is chosen to make p - exp ix for the fast oscillations, it follows that, in our notation, 
8 = (27r-l and A(ex) = exp ( -e2x2). At a jet Mach number of 0.1 the convection Mach 
number is 0.05, and clearly, then, the conditions for a superdirective field are met; 
indeed ( M , / ~ E ~ )  in (3.7) is very close to unity. According to (3.7), b2) would be 
expected to vary as exp (40M, cos 8), which is of the right form to explain one of the 
most puzzling features of the experiment, though not with sufficient variation to 
agree with the extraordinarily rapid variation exp (90Mc cos 8) quoted in (1.2). 

There are, of course, many other factors contributing to the measured directivity 
(1.2) which are not correctly modelled here, and it is inappropriate to pursue the 
comparison further until a more detailed analysis of the shear-layer dynamics is 
available to predict A(ex). This will be reported in a forthcoming paper. In the 
meantime, the present paper has shown, through simple model problems which have 
much in common with the essential features of the Laufer-Yen experiment, how a 
wave-packet source of particular structure can be highly compact in a nominal sense, 
and yet have a superdirective acoustic field. 

5. Conclusions 
We have examined the near-field pressure decay and the acoustic far-field 

directivity generated by boundary data of wave-packet form A(Ex) exp (ix- it). 
Exponential decay of incompressible pressure fluctuations is found to change to 
algebraic at a penetration distance O( l),  O(8-l) and O ( P )  for three representative 
envelope functions, A ( X )  = exp ( -  IXl), A ( X )  = (1 +X2)- l  and A ( X )  = exp ( - X 2 ) ,  
respectively. For the acoustic field, matching arguments indicate that superdirective 
behaviour will be found when the penetration distance and wavelength are 
comparable, a condition that can be met for a Gaussian A ( X )  with an envelope scale 
which is a vanishing fraction, O(E), of the acoustic wavelength. This appears to 
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contradict the standard requirement for superdirectivity, that the ‘source scale ’ 
must be comparable with the acoustic wavelength. However, the apparent 
contradiction is resolved by the recognition that the integral scale of the source, the 
proper measure of its size for acoustic purposes, is O(eA2) for Gaussian A (and indeed 
the integral scale and penetration distance are comparable for any A). 

The general relationship between these near- and far-field features and those found 
in low-Mach-number jet flows has been explained. In  particular, the predicted 
hyperbolic near-field pressure contours of a Gaussian envelope fit the contours 
measured by Lafouasse et al. (1986), while the Gaussian envelope of large-scale waves 
on a round jet was predicted by Huerre & Crighton (1983) and measured by Laufer 
& Yen (1983) along with the associated superdirective radiation - all in the 
surprising case of a very-low-Mach-number jet (MJ = O . l ) ,  with wave packets of large 
widt,h e-l - 27~. 

We are grateful to one of the referees for particularly helpful comments, as noted 
in 33, and to Dr J. M. Rallison for helpful comments in relation to the criterion 
(2.22). This work was supported by AFOSR Grant number AF F 49620-82-K-0019, 
and was reported in preliminary form as paper AIAA-84-2295 at the AIAAINASA 
9th Aeroacoustics Conference, Williamsburg, October 1984. 
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