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Pattern Selection in the Presence of a Cross Flow
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We study the pattern selection and the dynamics of a bifurcating system such as Taylor-Couette
flow or Rayleigh-Bénard convection, subject to an externally imposed cross flow using the complex
Ginzburg-Landau equation as a qualitative model. We show that the bifurcation scenario is radically
modified by the introduction of a cross flow, and that a nonlinear global mode, i.e., a nonlinear
oscillating solution in a semi-infinite domali®, +), with a homogeneous condition at= 0, exists
only when the basic state is linearly absolutely unstable. We derive the scaling law for the characteristic
growth size, which varies as~'/2 (e being the criticality parameter), and compares satisfactorily with
numerical and experimental results from the literature. [S0031-9007(97)04089-1]

PACS numbers: 47.20.Ky, 47.20.Ft, 47.54.+r

It is now well established that the dynamics of closedwas that absolute instability is a sufficient but not necessary
flows such as flow between rotating coaxial cylinderscondition for nonlinear global instability (i.e., nonlinearity
(Taylor-Couette flow) or between horizontal plates heatednay counterbalance the advection).
from below (Rayleigh-Bénard convection) is reasonably The present study generalizes these considerations to the
described close to threshold by amplitude equations demore generic case of the complex Ginzburg-Landau equa-
rived for an infinite system [1]. For a one-dimensionaltion which offers a physically more realistic but higher-
system, the effect of lateral boundaries has been shown tfimensional problem. It establishes analytically, for the
weakly stabilize the primary bifurcation by an ordefL>  first time, the link between absolute instability and non-
term (L being the size of the box). In these cases, for sulinear pattern selection in a semi-infinite domain for the
percriticality small but larger tha® (1/L?), the condition  nonpotential case of the complex Ginzburg-Landau equa-
at the lateral boundaries influences the flow in a diffusiveion. This model is believed to describe the dynam-
manner and, except in small boundary layers, the solutioits of the amplitude of Taylor-Couette [3,4] vortices or
has reached a local nonlinear equilibrium as if the domairRayleigh-Bénard [5] rolls close to the threshold with a
were infinite [2]. If an externally imposed cross flow is cross flow [12],

added [3-5] (or equivalently if traveling waves are desta- 9A A . 9%A

bilized such as in binary convection [6,7]), the diffusion o T U= (L +ic) o5 + pA

effects near boundaries are now convected in the direction ] 5

of the cross flow and may determine the pattern selection — (1 = ic3)|AlA. 1)

in the whole domain. Intuitively, the addition of a cross UpdA/dx represents the effect of advection witly > 0.
flow increases the stability of the system as an initial per-The bifurcation parameter ig, andc; andc; are real co-
turbation which is advected downstream while being amefficients [13]. A rescaling of, x, and ¢ would allow
plified and may ultimately leave the domain unperturbedus to set; to unity while leaving the other parameters in
For the same cross flow but at a higher value of the bifur£g. (1) unchanged, but we will keep this redundancy in pa-
cation parameter (stronger instability), instabilities shouldrameter in order to facilitate comparison with experiments.
be able to withstand the advection and saturate, forminghis self-similarity of (1) will imply that the global insta-
a self-sustained mode (the so-called global mode). Ohility will occur identically for everyUy.
a linear basis, this change of behavior has been associ-In an infinite domain.Ao =0 is linearly convectively
ated with a notion first developed in plasma physics [8Junstable [14] fo0 < u < uy = US/4(1 + ¢}) and linearly
of convective or absolute instability which relies on theabsolutely unstable for > w4, the associated absolute
direction of motion of the trailing edge of a wave packetfrequency beingvy = —cjua.
in the boundary’s reference frame. If the trailing edge Equation (1) is known [15] to exhibit a family of
moves downstream the flow is convective, and if it movessaturated traveling wave solutions parametrized doy
upstream the flow is absolute [9]. (defined up to an arbitrary phase):

In previous studies [10,11] we have proposed a nonlin- Ay = ayelviTol )
ear genc_aralization of thesg definiti.ons.by directly solvingWhere = — g ©=Ugy + c1qd — csdd.
the no'nllnear global stablhty, con.5|de_r|ng the'p_ro_bl_em OfPIease note that, onces is specified, two solu-
the existence of a nonlinear solution in a semi-infinite do-. : 2 .ox

. . ions exist for u > Uj/4(cy + c3): gy = (=1 =
main (a NG mode) with a homogeneous upstream bound- 5
ary condition. The major result illustrated up to now only\/1 +4(c1 +c3) (@ + c30)/Ug)Uo/2(ct + ¢c3), but that
on potential systems (real Ginzburg-Landau type equatiormnly gy exists for0 = u = U3/4(c; + c3).
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In a semi-infinite domain, nonlinear global (NG) modes ag = — 2uqg — C(w — Ugq)a — Cci(wa — Ugu)
are defined as oscillatory solutions of Eqg. (1) with the o 5
boundary condition at the origid(0) = 0. At infinity, 34 ©)
the NG mode is asymptotic to a plane wave of the type. > 3
(2). The solutionqg, VF\)/hen it exists, is shown in [16)5p u=aq” = Clua = Upu) + Ceilw = Upgla + Rsa,
to be unphysical as it corresponds to a negative “group (6)
velocity” dw /dqy. with C=(1+c)7!, IL=Clc; +¢3), and Ry =

Therefore, in the sequel, onlyy is considered and the C(1 — cic3).

(+) is dropped for simplicity of notations. Furthermore, Different w correspond to different dynamical sys-
only solutions asymptotic to a stable nonlinear wave willtems, which we are going to describe. The interesting
be considered here. This imposes two conditions: Firstlyfixed points of this dynamical system are the point
1 — cic3 > 0 (Benjamin-Feir stable domain); secondly, A;(w) = (ay,qn,0) which possesses a unique stable
o belongs to the white parabolic zone [17] depicted ineigendirection whew belongs to the unshaded region of
Fig. 1 (the stability condition ogy may be found in [15]). Fig. 1 and represents the previously introduced saturated

We are now faced with first considering the existenceraveling wave, and the pointsi; (w) = (0,4 ,0),

of a NG mode and then solving the frequency selectiowhere ¢y = go * sgn(o)\/([x + io| + k)/2 and

prqblem. Because of the rotational invarianté — go = —Cc1Uy/2; k,o0 are real, and k + ioc =
Ae'?), a NG mode may be sought in the form C —ic)(u +iow — C(1 — ic))U3/4. In the phase
Alx.1) = a(x)eif q(x')dx/e,iw,, 3) space(a, ¢, u) a NG mode is represented by a trajectory

) i i ’ linking a point of the planer = 0 with u different from
with a(x), g(x), andw real. This transformation which 0 to A,. In other words, a NG mode exists when the

absorbs the_ phase invariange into th_e spatial origin igiaple manifold oft, intersects the plane = 0 at a point
often associated [18—20] with the singular change ofyhere, + 0. Introduction of this condition in Eg. (5)
variable k = a/a (the dot denotes differentiation with leads necessarily tq = g, at the intersection point if

respect tox), called theo process by Amold [21]. j exists. The stable manifold of» can cross the plane
Here we usex = a since a NG mode which satisfies , _ only on the axi<q = go,a = 0).
a(0) = 0 would be a singular solution if we were using o 5 givenu, we shall consider the two-dimensional
the variablek. A proof of existence of solutions may ¢ rface formed by the union of all stable manifolds
possibly pe.d.erived by_interpreting the results by Kapitulaof As(w) generated by varyingw. From numerous
[22] for infinite domains. However, we present heren merical solutions of (4)—(6) we have found that, for
physical arguments leading to the derivation of scalingy « and w, the stable manifold oft, emanates from
laws for the NG modes above threshold, which we shalha along the ¢ direction. The crossing of the axis
compare with the numerical results by MUIIet_ al. [5] (¢ = qo,a = 0) occurs only whenu > us(Uo, c1, ¢3)
and Bichelet al. [3]. Under the change of variable (3), \hich therefore defines the global instability threshold.
the initially second-order equation (1) becomes first ordelg in the real coefficient case, the emergence of the
and is reduced to the dynamical system (4)—(6) in th&ohal mode is linked to the local changes arougdand
three variables, ¢, andu = a: Ay . When increasingu through w,, those two points
a=u, (4)  collide at w = w4 and shift to opposite sides of the
planeg = qq allowing a heteroclinic orbit for a particular
frequencywg(u) to cross theg = gg,a = 0 axis. The
numerically selected values af;(w) for which the axis
w a = 0,q = qo is crossed are plotted in Fig. 1.

These observations are confirmed using a matched
asymptotic expansion close to the threshqld= w,4
which shows that whatevell,, a NG mode exists only
for u > ua and predicts the frequency selection plotted
by the heavy line in Fig. 1.

The perturbation analysis is carried out analytically,
except for matching conditions expressed as series which
have to be evaluated numerically.

The heteroclinic trajectory(a), us(a) at w = us and
w = wy represents the Kolmogorov front [16,23] linking
FIG. 1. Region of (u,w) space where saturated traveling A, = (0, o, 0) to A, (note that, in this case; = g; = qo).

waves (ay,qy) are stable (white region). NG modes exist | he phase space, all trajectories are described as func-
for uw > ws with a frequencywg(w) obtained numerically

represented by the thin continuous line. We predict thations of a; gs(a) anduy(a) are expanded in powers of
we(ms) = wa and its slope (heavy continuous line) by a With generaltermg;(ay — a)’ andv;(ay — a)’. When
perturbation analysis around the threshold. setting the bifurcation parameter value go= us + e,
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the stable manifold ofi, considered as a perturbation of The slope of NG modes is the slopg rescaled by the
the frontg(a), us(a) [the perturbation is also taken in the size of the inner region:
form of series expansions with general tereg;(ay —

A ; dA CU
a)l andeAj(ay — a)'] gives rise to a NG mode (intersec- In ‘ d—(O) ’ = —2—071 +Ine + Invy. (8)
tion of the axisa = 0,9 = ¢qo) corresponding to a single * Be
frequency of the formw, + ew;. The dominant contribution as — 0 is €~ '/2, and this

Although the entire analysis has been carried out iresult is analytic although the coefficier®@ may be
the phase space, Fig. 2 displays its basic principle imumerically computed only after having solved (7).
physical space. The long dashed line represents the The characteristic growth size of the global mode is
Kolmogorov front g¢(a),us(a) at the thresholdu =  defined as the distanckx such thata(Ax) = 0.5ay. It
ma with frequencyw,. When increasingu, the front  may be calculated by adding thethickness of the inner
shape is slightly perturbed (continuous line). In theregion and the size of the outer solution between the
singular limit e << 1, an inner region of sizé#(e) =  boundary of the inner layer and the point at which the
e exp(—CUym/2B+/€) determined by the matching has amplitude reaches the val@e5ay. When keeping only
to be introduced in the neighborhood of the originthe dominant contribution, the following scaling law is
(gray region of Fig. 2) in order to take into account obtained:
the boundary conditiom(0) = 0. An inner solution is ~
found analytically as a linear solution of (4)—(6) in the Ax = m/B+/e. 9)
vicinity of « = 0. Application of the method of matched Note again, that the !/ dependence comes out naturally
asymptotic expansions [24] between the inner and outdfom the singular perturbation analysis.

solution leads to the determination of the slapeat the These results allow us to interpret the pattern selection
origin of the inner solution and of the departwe; of  occurring in open flow systems in the globally unstable
the NG mode frequency froma,. regime. For example, Biichet al. [3] describe propagat-
The matching condition reads ing vortex structures in the rotating Taylor-Couette sys-
a2 & ' v - tem with an externally imposed axial throughflow. Their
a+ipg =" Z Aja{v - i%sinr.z(a—) simulations of the Navier-Stokes equations show that the
Vo j=o 111" B bifurcation occurs foru = u4. In the absolutely un-
< . stable regime, a unique spatiotemporal pattern is selected;
X ; JPjaN - (7) " the associated oscillation frequency and the spatial varia-

tion of the vortex flow intensity depend only on the control

: / 2 I AR arameters and boundary conditions. They interpret the
with |41 = yCO + wi), =4l = «)/2, B = ?requency and bulk Wavglength selection a}; a ngnlinear
V4l + x1)/2, and x = C(1 + cjy).  The co- eigenvalue problem, the frequency being the eigenvalue,
?ﬁ'c"?f‘ts Aj are linear in @i MOdUIUSf and phase 504 show numerically that, when approaching the absolute
identification allow a numerical evaluation of Eq. (7) jhgtapility threshold, the selection mechanism is identical
to determinevo and @1 Then the selected. frequer)cy to the linear selection mechanism for front propagation de-
wG = ws + €w; is determined (heavy continuous line goijpay by Eq. (1) in an infinite domain. The numerical
in Fig. 1)'. We aré now able to find scaling laws for th‘? shape of the vortex flow intensity of Blchet al. may
characteristic growth slzé of NG mode_s and for t_he'rbe reinterpreted in terms of nonlinear global modes. In
slope|da/dx(0)| at the origin of the domain as a function particular, they present a plot of the scaled growth length
of the departure from the NG threshaid= p = pa. L = /i Ax of the vortex flow intensity versus the scaled
advection velocityV, = Uy+/C/u which is in quite good
qualitative agreement with our scaling law (9) rewritten in

a(z) H the form
P an - 101 _ y2/4-1/2
—F JrAx =771 = V42 (10)

/ ! where (1 — V§/4) is the rescaled departure from criti-

// / O(1) cality. In order to obtain a quantitative comparison, we
B(e) / J have used in Eq. (10) the same values of the Reynolds

AN A A numberRe and TaylorT number as those plotted in Fig. 1

_I /7_ of [3] to generate for each combinatiéRe, T), the same
e o ¢ & set of Ginzburg-Landau coefficientg, ¢y, c¢3 as in [3],
0 e~ 1/2 thereby allowing computation of our series coefficients

and the solution of Eq. (7). Values ef and c; are,

FIG. 2. Matching principle used to determine the frequency . 5 3 .
of a NG mode. The front at the threshold (long dashed line) isrespectlvely,(O(IO )andO(10™°). Uy varies from0.12

perturbed and shifted (continuous line) in order to match withto 0.65, and w, obtained from (7) varies from-0.06 to
the inner solution in the gray region. —0.98. Please note that in our analygisis a function
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(b) o and wave number nearly equal with a phase shift pro-
log L portional toe'/2). The conditionz = 0 is realized by the
3 2 destructive interaction of these two waves, and a distance
o of ordere~!/2 is required to reach order one amplitudes.
&y The authors wish to thank P. Weidman for his careful
s 1 reading of the manuscript.
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