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Pattern Selection in the Presence of a Cross Flow
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(Received 31 October 1996)

We study the pattern selection and the dynamics of a bifurcating system such as Taylor-Cou
flow or Rayleigh-Bénard convection, subject to an externally imposed cross flow using the comp
Ginzburg-Landau equation as a qualitative model. We show that the bifurcation scenario is radic
modified by the introduction of a cross flow, and that a nonlinear global mode, i.e., a nonline
oscillating solution in a semi-infinite domainf0, 1`d, with a homogeneous condition atx  0, exists
only when the basic state is linearly absolutely unstable. We derive the scaling law for the character
growth size, which varies ase21y2 (e being the criticality parameter), and compares satisfactorily with
numerical and experimental results from the literature. [S0031-9007(97)04089-1]

PACS numbers: 47.20.Ky, 47.20.Ft, 47.54.+r
ry

the
a-

-
e
-
e
a-
-

r
a

a-
s.
It is now well established that the dynamics of close
flows such as flow between rotating coaxial cylinde
(Taylor-Couette flow) or between horizontal plates heat
from below (Rayleigh-Bénard convection) is reasonab
described close to threshold by amplitude equations d
rived for an infinite system [1]. For a one-dimensiona
system, the effect of lateral boundaries has been shown
weakly stabilize the primary bifurcation by an order1yL2

term (L being the size of the box). In these cases, for s
percriticality small but larger thanO s1yL2d, the condition
at the lateral boundaries influences the flow in a diffusiv
manner and, except in small boundary layers, the solut
has reached a local nonlinear equilibrium as if the doma
were infinite [2]. If an externally imposed cross flow i
added [3–5] (or equivalently if traveling waves are dest
bilized such as in binary convection [6,7]), the diffusio
effects near boundaries are now convected in the direct
of the cross flow and may determine the pattern select
in the whole domain. Intuitively, the addition of a cros
flow increases the stability of the system as an initial pe
turbation which is advected downstream while being am
plified and may ultimately leave the domain unperturbe
For the same cross flow but at a higher value of the bifu
cation parameter (stronger instability), instabilities shou
be able to withstand the advection and saturate, form
a self-sustained mode (the so-called global mode).
a linear basis, this change of behavior has been ass
ated with a notion first developed in plasma physics [
of convective or absolute instability which relies on th
direction of motion of the trailing edge of a wave packe
in the boundary’s reference frame. If the trailing edg
moves downstream the flow is convective, and if it move
upstream the flow is absolute [9].

In previous studies [10,11] we have proposed a nonl
ear generalization of these definitions by directly solvin
the nonlinear global stability, considering the problem
the existence of a nonlinear solution in a semi-infinite d
main (a NG mode) with a homogeneous upstream boun
ary condition. The major result illustrated up to now onl
on potential systems (real Ginzburg-Landau type equatio
0031-9007y97y79(14)y2666(4)$10.00
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was that absolute instability is a sufficient but not necessa
condition for nonlinear global instability (i.e., nonlinearity
may counterbalance the advection).

The present study generalizes these considerations to
more generic case of the complex Ginzburg-Landau equ
tion which offers a physically more realistic but higher
dimensional problem. It establishes analytically, for th
first time, the link between absolute instability and non
linear pattern selection in a semi-infinite domain for th
nonpotential case of the complex Ginzburg-Landau equ
tion. This model is believed to describe the dynam
ics of the amplitude of Taylor-Couette [3,4] vortices o
Rayleigh-Bénard [5] rolls close to the threshold with
cross flow [12],

≠A
≠t

1 U0
≠A
≠x

 s1 1 ic1d
≠2A
≠x2

1 mA

2 s1 2 ic3djAj2A . (1)

U0≠Ay≠x represents the effect of advection withU0 . 0.
The bifurcation parameter ism, andc1 andc3 are real co-
efficients [13]. A rescaling ofA, x, and t would allow
us to setU0 to unity while leaving the other parameters in
Eq. (1) unchanged, but we will keep this redundancy in p
rameter in order to facilitate comparison with experiment
This self-similarity of (1) will imply that the global insta-
bility will occur identically for everyU0.

In an infinite domain,A0 ; 0 is linearly convectively
unstable [14] for0 , m , mA ; U2

0 y4s1 1 c2
1d and linearly

absolutely unstable form . mA, the associated absolute
frequency beingvA ; 2c1mA.

Equation (1) is known [15] to exhibit a family of
saturated traveling wave solutions parametrized byv

(defined up to an arbitrary phase):

A2 ; aN eiqN x2vt , (2)

where a2
N  m 2 q2

N , v  U0qN 1 c1q2
N 2 c3a2

N .
Please note that, oncev is specified, two solu-
tions exist for m . U2

0 y4sc1 1 c3d: q6
N  s21 6q

1 1 4sc1 1 c3d sv 1 c3mdyU2
0 dU0y2sc1 1 c3d, but that

only q1
N exists for0 # m # U2

0 y4sc1 1 c3d.
© 1997 The American Physical Society
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In a semi-infinite domain, nonlinear global (NG) mode
are defined as oscillatory solutions of Eq. (1) with th
boundary condition at the originAs0d  0. At infinity,
the NG mode is asymptotic to a plane wave of the ty
(2). The solutionq2

N , when it exists, is shown in [16]
to be unphysical as it corresponds to a negative “gro
velocity” dvydqN .

Therefore, in the sequel, onlyq1
N is considered and the

s1d is dropped for simplicity of notations. Furthermore
only solutions asymptotic to a stable nonlinear wave w
be considered here. This imposes two conditions: Firs
1 2 c1c3 . 0 (Benjamin-Feir stable domain); secondly
v belongs to the white parabolic zone [17] depicted
Fig. 1 (the stability condition onqN may be found in [15]).

We are now faced with first considering the existen
of a NG mode and then solving the frequency selecti
problem. Because of the rotational invariancesA !
Aeiud, a NG mode may be sought in the form

Asx, td  asxdei
Rx

qsx0ddx0

e2ivt , (3)
with asxd, qsxd, and v real. This transformation which
absorbs the phase invariance into the spatial origin
often associated [18–20] with the singular change
variable k  Ùaya (the dot denotes differentiation with
respect tox), called the s process by Arnol’d [21].
Here we useu  Ùa since a NG mode which satisfie
as0d  0 would be a singular solution if we were usin
the variablek. A proof of existence of solutions may
possibly be derived by interpreting the results by Kapitu
[22] for infinite domains. However, we present her
physical arguments leading to the derivation of scali
laws for the NG modes above threshold, which we sh
compare with the numerical results by Mülleret al. [5]
and Büchelet al. [3]. Under the change of variable (3)
the initially second-order equation (1) becomes first ord
and is reduced to the dynamical system (4)–(6) in t
three variablesa, q, andu  Ùa:

Ùa  u , (4)

FIG. 1. Region of sm, vd space where saturated travelin
waves saN , qN d are stable (white region). NG modes exis
for m . mA with a frequencyvGsmd obtained numerically
represented by the thin continuous line. We predict th
vGsmAd  vA and its slope (heavy continuous line) by
perturbation analysis around the threshold.
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a Ùq  2 2uq 2 Csv 2 U0qda 2 Cc1sma 2 U0ud

2 I3a3, (5)

Ùu  aq2 2 Csma 2 U0ud 1 Cc1sv 2 U0qda 1 R3a3,

(6)
with C  s1 1 c2

1d21, I3  Csc1 1 c3d, and R3 
Cs1 2 c1c3d.

Different v correspond to different dynamical sys
tems, which we are going to describe. The interesti
fixed points of this dynamical system are the poi
A2svd ; saN , qN , 0d which possesses a unique stab
eigendirection whenv belongs to the unshaded region o
Fig. 1 and represents the previously introduced satura
traveling wave, and the pointsA6

0 svd ; s0, q6
0 , 0d,

where q6
0  q0 7 sgnssd

p
sjk 1 isj 1 kdy2 and

q0  2Cc1U0y2; k,s are real, and k 1 is ;
Cs1 2 ic1d sm 1 iv 2 Cs1 2 ic1dU2

0 y4. In the phase
spacesa, q, ud a NG mode is represented by a trajecto
linking a point of the planea  0 with u different from
0 to A2. In other words, a NG mode exists when th
stable manifold ofA2 intersects the planea  0 at a point
where u fi 0. Introduction of this condition in Eq. (5)
leads necessarily toq  q0 at the intersection point if
it exists. The stable manifold ofA2 can cross the plane
a  0 only on the axissq  q0, a  0d.

For a givenm, we shall consider the two-dimensiona
surface formed by the union of all stable manifold
of A2svd generated by varyingv. From numerous
numerical solutions of (4)–(6) we have found that, fo
all m and v, the stable manifold ofA2 emanates from
A2

0 along the q direction. The crossing of the axis
(q  q0, a  0) occurs only whenm . mAsU0, c1, c3d
which therefore defines the global instability threshol
As in the real coefficient case, the emergence of t
global mode is linked to the local changes aroundA1

0 and
A2

0 . When increasingm through mA, those two points
collide at m  mA and shift to opposite sides of the
planeq  q0 allowing a heteroclinic orbit for a particular
frequencyvGsmd to cross theq  q0, a  0 axis. The
numerically selected values ofvGsmd for which the axis
a  0, q  q0 is crossed are plotted in Fig. 1.

These observations are confirmed using a match
asymptotic expansion close to the thresholdm  mA

which shows that whateverU0, a NG mode exists only
for m . mA and predicts the frequency selection plotte
by the heavy line in Fig. 1.

The perturbation analysis is carried out analyticall
except for matching conditions expressed as series wh
have to be evaluated numerically.

The heteroclinic trajectoryqfsad, ufsad at m  mA and
v  vA represents the Kolmogorov front [16,23] linking
A0  s0, q0, 0d to A2 (note that, in this case,q1

0  q2
0  q0).

In the phase space, all trajectories are described as fu
tions of a; qfsad andufsad are expanded in powers ofa
with general termsrjsaN 2 adj andnjsaN 2 adj. When
setting the bifurcation parameter value tom  mA 1 e,
2667
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the stable manifold ofA2 considered as a perturbation o
the frontqf sad, ufsad [the perturbation is also taken in the
form of series expansions with general termsehjsaN 2

adj andeljsaN 2 adj] gives rise to a NG mode (intersec
tion of the axisa  0, q  q0) corresponding to a single
frequency of the formvA 1 ev1.

Although the entire analysis has been carried out
the phase space, Fig. 2 displays its basic principle
physical space. The long dashed line represents
Kolmogorov front qfsad, ufsad at the thresholdm 
mA with frequencyvA. When increasingm, the front
shape is slightly perturbed (continuous line). In th
singular limit e ø 1, an inner region of sizeused 
e exps2CU0py2b

p
e d determined by the matching has

to be introduced in the neighborhood of the origi
(gray region of Fig. 2) in order to take into accoun
the boundary conditionas0d  0. An inner solution is
found analytically as a linear solution of (4)–(6) in th
vicinity of a  0. Application of the method of matched
asymptotic expansions [24] between the inner and ou
solution leads to the determination of the slopey0 at the
origin of the inner solution and of the departureev1 of
the NG mode frequency fromvA.

The matching condition reads

a 1 ib 
jz1j

1y2

y0

1X̀
j0

lja
j
N 2 i

y0

jz1j1y2 sinh2

µ
ap

b

∂
3

1X̀
j1

jrja
j
N , (7)

with jz1j 
q

Cs1 1 v
2
1d, a 

p
sjz1j 2 k1dy2, b p

sjz1j 1 k1dy2, and k1  Cs1 1 c1v1d. The co-
efficients lj are linear in v1. Modulus and phase
identification allow a numerical evaluation of Eq. (7
to determiney0 and v1. Then the selected frequency
vG . vA 1 ev1 is determined (heavy continuous line
in Fig. 1). We are now able to find scaling laws for th
characteristic growth size of NG modes and for the
slopejdaydxs0dj at the origin of the domain as a function
of the departure from the NG thresholde  m 2 mA.

FIG. 2. Matching principle used to determine the frequenc
of a NG mode. The front at the threshold (long dashed line)
perturbed and shifted (continuous line) in order to match wi
the inner solution in the gray region.
2668
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The slope of NG modes is the slopey0 rescaled by the
size of the inner region:

ln

Ç
dA
dx

s0d
Ç

. 2
CU0p

2b
p

e
1 ln e 1 ln y0 . (8)

The dominant contribution ase ! 0 is e21y2, and this
result is analytic although the coefficientb may be
numerically computed only after having solved (7).

The characteristic growth size of the global mode
defined as the distanceDx such thatasDxd  0.5aN . It
may be calculated by adding thex thickness of the inner
region and the size of the outer solution between th
boundary of the inner layer and the point at which th
amplitude reaches the value0.5aN . When keeping only
the dominant contribution, the following scaling law is
obtained:

Dx . pyb
p

e . (9)

Note again, that thee21y2 dependence comes out naturally
from the singular perturbation analysis.

These results allow us to interpret the pattern selecti
occurring in open flow systems in the globally unstabl
regime. For example, Büchelet al. [3] describe propagat-
ing vortex structures in the rotating Taylor-Couette sys
tem with an externally imposed axial throughflow. Thei
simulations of the Navier-Stokes equations show that t
bifurcation occurs form  mA. In the absolutely un-
stable regime, a unique spatiotemporal pattern is select
the associated oscillation frequency and the spatial var
tion of the vortex flow intensity depend only on the contro
parameters and boundary conditions. They interpret t
frequency and bulk wavelength selection as a nonline
eigenvalue problem, the frequency being the eigenvalu
and show numerically that, when approaching the absolu
instability threshold, the selection mechanism is identic
to the linear selection mechanism for front propagation d
scribed by Eq. (1) in an infinite domain. The numerica
shape of the vortex flow intensity of Büchelet al. may
be reinterpreted in terms of nonlinear global modes.
particular, they present a plot of the scaled growth leng
L ; p

m Dx of the vortex flow intensity versus the scaled
advection velocityVg ; U0

p
Cym which is in quite good

qualitative agreement with our scaling law (9) rewritten i
the form

p
m Dx . pb21s1 2 V 2

g y4d21y2, (10)

where s1 2 V 2
g y4d is the rescaled departure from criti-

cality. In order to obtain a quantitative comparison, w
have used in Eq. (10) the same values of the Reynol
numberRe and TaylorT number as those plotted in Fig. 1
of [3] to generate for each combinationsRe, T d, the same
set of Ginzburg-Landau coefficientsU0, c1, c3 as in [3],
thereby allowing computation of our series coefficient
and the solution of Eq. (7). Values ofc1 and c3 are,
respectively,O s1022d andO s1023d. U0 varies from0.12
to 0.65, and v1 obtained from (7) varies from20.06 to
20.98. Please note that in our analysisb is a function



VOLUME 79, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 6 OCTOBER 1997

ro-

nce
.
ful

-

h.

v.

v.

.

d

re
of

)

.

ter-

of
r
is

.

c.

f

.

FIG. 3. (a) The scaled growth length of NG modes predicte
by (10) (continuous lines) are superposed on the results
[3]. For the Taylor-Couette problem with throughflow, the
three sets of open symbols represent values computed in
for three different Taylor numbers. (b) The same quantitie
for the Rayleigh-Bénard problem with throughflow. Symbols
represent values computed in [5] for three different Rayleig
numbers. The continuous line is our theoreticale21y2 law with
b  1.

of v1, but asc1, c3 are small,b stays so close to 1 that
the theoretical predictions for the three sets are identic
Our theoretical results are superposed on those obtain
by Büchelet al. [3] in Fig. 3(a). The good quantitative
agreement, especially in the vicinity of the thresholdVg 
2, confirms the validity of our analysis to describe the
dynamics of the Taylor-Couette system with throughflow

The same quantitative agreement is observed wh
we compare our theoretical analysis with the numeric
results of Müller et al. [5] for the Rayleigh-Bénard
problem with a Poiseuille flow [Fig. 3(b)]. Moreover,
the spatial structure of the NG mode (Fig. 4) analyticall
obtained in the present study for parameters values giv
in [5] and without an additional free parameter is in goo
agreement with the one obtained in [5] by integration o
the Navier-Stokes equations.

Finally, it is worth noting that the dependence ine21y2

of the typical growth length of the flow cannot be inter-
preted as the classical correlation length because it com
here from linear branches switching at the absolute inst
bility threshold (two unstable linear waves with the sam

FIG. 4. (a) Vertical velocity field computed in [5] for the
Rayleigh-Bénard problem with Poiseuille flow by numerica
simulation of Navier-Stokes equations. (b) NG mode entirel
analytically obtained in the present study without any adjustab
parameter.
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v and wave number nearly equal with a phase shift p
portional toe1y2). The conditiona  0 is realized by the
destructive interaction of these two waves, and a dista
of ordere21y2 is required to reach order one amplitudes
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