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Abstract

For flows subject to subcritical instabilities the stability of the basic flow can be guaranteed only for perturbations
ergy lower than a critical thresholdδ. The computation of this threshold for the Navier–Stokes equations is still out of r
More surprisingly, this computation has not been attempted for low dimensional models of subcritical transition. In th
guidelines are provided for the computation of the minimum energy thresholdδ and of the corresponding nonlinear optim
perturbations. In particular it is demonstrated that nonlinear optimal perturbations are constrained by the requirement
must satisfy a local minimum condition. These results are applied to the analysis of four-dimensional models pro
F. Waleffe, Phys. Fluids 7 (1995) and Phys. Fluids 9 (1997).To cite this article: C. Cossu, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une condition d’optimalité pour le seuil minimal d’énergie dans les transitions sous-critiques. Dans le cas d’instabilité
sous-critique, la stabilité de l’écoulement de base peut être garantie seulement pour des perturbations d’énergie inf
seuil critiqueδ. Le calcul direct de ce seuil est inaccessible pour les équations de Navier–Stokes. Plus surprenant est
ce calcul n’a pas été tenté pour des modèles de basse dimension de transition sous-critique. Dans cette Note des
générales sont fournies pour le calcul deδ et des perturbations non linéaires optimales associées. Notamment, nous dém
que les perturbations non linéaires optimales doivent satisfaire une condition de minimum local. Ces résultats sont ap
l’analyse de systèmes à quatre dimensions proposés in F. Waleffe, Phys. Fluids 7 (1995) et Phys. Fluids 9 (1997).Pour citer cet
article : C. Cossu, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Framework

In many shear flows, fully developed turbulence is observed at sufficiently high Reynolds numberR even though
the laminar basic state is linearly stable to infinitesimal perturbations. Examples of such so-called subcritic
bility include plane Couette flow, (which is linearly stable for allR) and pipe Poiseuille flow. In such circumstanc
asymptotic stability (i.e. the decay of all the disturbances ast → ∞) of the basic state is guaranteed only if t
energy of the allowable perturbationsE is lower than some thresholdδ. In generalδ is a function of the Reynold
numberR. For sufficiently smallR < RG, δ is infinite and the flow is said to be globally stable in that all dist
bances, whatever their initial amplitude, decay asymptotically in time. Various analyses have provided [1]
on RG, as well as [2] bounds onδ(R). Indeed, various studies [3–5] have attempted to identify a power law
tionship betweenδ andR asR → ∞ of the formδ1/2 ∼ Rγ for some scaling coefficientγ . Nevertheless, despit
great progress, an important gap often exists between upper and lower bounds provided by different stud
formal theory predicting the dependence ofδ on R still seems out of reach for real flows determined by soluti
of the Navier–Stokes equations. However, the situation is very different for low order reduced models whi
been developed to mimic different aspects of subcritical transition in real flows. The principal aim of this N
to compute, for specific low dimensional models, threshold amplitude as a function ofR as well as the associate
optimal nonlinear perturbations. Therefore, we examine the nonlinear asymptotic stability of a linearly stab
stateU to a general perturbationu. Defining the total generic flow field asuG = U + u, evolution equations can b
derived foru, which take the general form [1]:

du/dt = LR u +N (u) (1)

The laminar basic stateuG = U of course corresponds tou = 0. In (1), LR is a linear operator which depen
on U andR while N is a nonlinear operator which we assume to be homogeneous, in the sense thatN (0) = 0.
The initial value problem corresponds to considering the evolution ofu with time, which evolution is in general
function ofR and the specified initial conditionsu0 given att0. Naturally it is also possible to consider the ene
E of this perturbation, which may be defined in the conventional way using an appropriate inner product:

E
[
u(t,u0,R)

] = 〈u,u〉/2, E0(u0) = 〈u0,u0〉/2 (2)

Taking the inner product of (1) withu yields the evolution equation forE [1]:

dE/dt = 〈u,LR u〉 + 〈
u,N (u)

〉
(3)

It is important to note the Navier–Stokes equations [1,2], and most low dimensional models of subcritic
sition [4] have the valuable property that the relevant nonlinear termsN are ‘energy preserving’, in the sen
that 〈u,N (u)〉 = 0 ∀u. The basin of attractionSR of the laminar basic flowu = 0 at fixedR is given by the se
of initial perturbationsu0 such that limt→∞ E[u(t,u0,R)] = 0. Since we assumeU linearly (strictly) stable, its
basin of attraction has non-zero measure. The complementary setUR is made of initial perturbations for whic
limt→∞ E[u(t,u0,R)] �= 0. This set has zero measure if the laminar basic flow is globally stable. WhenUR has
non-zero measure, theminimum threshold energy can be defined asδ(R) = minu0∈UR

E0(u0). The nonlinear opti-
mal perturbation (abbreviated henceforth as NLOP) is defined as the initial perturbation for which the mi
δ is attained. In the following we will refer also tolinear optimal perturbations, denoted by LOP, maximizing th
linear energy growthE (L)/E (L)

0 computed on the linear system du(L)/dt = LR u(L) over all the possible perturba
tions and over all possible times [6]. The maximum linear energy growth can be large if the linear operaLR

is non-normal (i.e. if it does not commute with its adjoint). It has been suggested that the potential for larg
sient growths dur to non-normality is a key mechanism in subcritical transition (see among others [6,3,2])
optimals have been therefore computed for a variety of flows and are reviewed in [2].
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2. A necessary condition for nonlinear optimality

Not all possible initial perturbations are suitable candidates to be nonlinear optimals (NLOP). Con
neighborhood�t 	 1 of t0. We expand the perturbation energy asE[u(t0 + �t,u0,R)] = E0 + �t (dE/dt)0 +
(�t2/2)(d2E/dt2)0 +O(�t3). If u0 ∈ UR (the complementary set to the basin of attractionSR of the laminar basic
state), and(dE/dt)0 < 0 thenu(t0+�t,u0,R), with �t > 0 also belongs toUR because it is on the same trajecto
in phase space, and has a perturbation energyE < E0. Thereforeu0 is not an NLOP because it has not the minim
E in UR . Analogously, in the case(dE/dt)0 > 0, a similar argument with�t < 0 demonstrates thatu0 is also not
an NLOP. Indeed all NLOPs must be members of the setZR of perturbations with dE/dt = 0 and furthermore
satisfy d2E/dt2(t0,u0,R) � 0. By substitution in the evolution equation (3), it is easily verified that perturba
which are inZR must satisfy the condition〈u,LR u〉 + 〈u,N (u)〉 = 0. For systems with energy-preserving no
linear terms, the perturbations belonging toZR satisfy the simpler condition〈u,LR u〉 = 0, a condition which is
independent of the amplitude ofu0. This proves that:

Theorem 2.1. In a nonlinear system with energy preserving nonlinear terms, a necessary condition for u0 to be a
nonlinear optimal perturbation is that 〈u0,LR u0〉 = 0 and d2E/dt2(t0,u0,R) � 0.

3. Application to low dimensional models of subcritical transition

Several low dimensional models, reviewed in [4], have been considered to investigate qualitative fea
subcritical transition. These models usually share properties of the Navier–Stokes equations that are th
be relevant in subcritical transition. These include: (a) They admit the linearly stable laminar fixed pointu = 0,
∀R; (b) the linear operatorLR is non-normal in the sense defined above; (c) nonlinear terms preserve e
We compute the minimum threshold energyδ and the associated nonlinear optimal perturbations for two of t
models making use of the optimality condition stated in the previous section. The model systems we c
are four-dimensional. One, referred to henceforth as W95, has been inspired by the modeling of self-s
processes in wall turbulence [7] while the other, referred to henceforth as W97, is inspired from a low dime
Galerkin projection of the Navier–Stokes equations for a Couette-like shear flow [8]. Both models describe
linear self-sustained process using the amplitude of streamwise vorticesv, the amplitude of streamwise streaksu,
the amplitude of sinuous perturbations of the streaksw and the amplitude of the mean shearm induced by these
perturbations. The 4D state vector is defined asu = {m,u,v,w}T and the linear and nonlinear operators are defi
as:

LR =




−k2
m/R 0 0 0
0 −k2

u/R σu 0
0 0 −k2

v/R 0
0 0 0 −k2

w/R − σm


 ; N (u) =




σm w2 − σu uv

−σw w2 + σu mv

σv w2

(σw u − σm m − σv v)w




(4)

The same coefficients as those considered in [7] and [8] have been selected.1 The phase space dynamics of the
systems have already been investigated in [7,8]. For model W95, a saddle-node bifurcation takes placR =
98.63. The global stability of the basic flow is lost betweenR = 98.63 andR = 101.03 where another attracto
exists with a minute basin of attraction. The basic flow is again globally stable betweenR = 101.03 andR = 356.
Subsequently it loses again its global stability because a stable limit cycle appears and persists for largeR. For
model W97 the first saddle-node bifurcation is atR = 104.84. The ‘lower branch’ solution is a saddle while t

1 For the W95 model: [km, ku, kv, kw] = [3.16,3.16,3.16,3.87], and [σm,σu,σv, σw] = [0,1,1,0.5]. For the W97 model:
[k , k , k , k ] = [1.57,2.28,2.77,2.67], and[σ ,σ ,σ ,σ ] = [0.31,1.29,0.22,0.68].
m u v w m u v w
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Fig. 1. Minimum threshold amplitude curve(2δ)1/2(R) for respectively the W95 (left) and the W97 (right) model.

upper branch is an unstable fixed point, which becomes stable atRG = 138.06, thus rendering the stability o
the laminar basic flow only conditional forR > RG. The perturbation energy is defined using the standard i
product asE = (m2 + u2 + v2 + w2)/2 and it is easily found that the vectors belonging toZR must satisfy:

σuu0v0 − [
k2
mm2

0 + k2
uu

2
0 + k2

vv
2
0 + (Rσm + k2

w)w2
0

]
/R = 0 (5)

Non-trivial solutions of Eq. (5) exist foruv > 0 andR � RE = 2kukv/σu. For the W95 modelRE = 20 while
RE = 4.89 for the W97 model. We computed the thresholdδ and the corresponding NLOPs by selecting ini
conditions on a sphere of sufficiently lowE0 and then integrating the equations up totmax= 100R. Only ‘potentially
optimal’ initial conditions in theZR set were considered. We randomly selectedm0, u0 andw0 and then retrieved
v0 solving Eq. (5) which is a second order algebraic equation inv0. Real solutions forv0 are found only when
the discriminant of that equation is non-negative, which strongly reduces the number of initial condition
investigated. We then rescaled the solutions toE0 and excluded initial conditions for which d2E/dt2 < 0. For
sufficiently low E0 all the solutions end in a neighborhood of the laminar basic stateE(tmax) < ε demonstrating
that the sphere is completely contained in the basin of attraction of the laminar basic state. The initial
E0 is then increased by small steps�E0 and the computations repeated at each step. The minimum threshδ

is found as the minimum value ofE0 for which at least one solution does not satisfy the conditionE(tmax) < ε.
The corresponding initial condition represents the NLOP. This kind of computation was repeated for valuR

ranging from 300 to 3000 for the W95 model2 and from 100 to 1000 for the W97 model. The minimum thresh
amplitude curves

√
2δ(R) are shown in Fig. 1. These curves, originating atRG, attain, for sufficiently largeR, the

asymptotic scalings, predicted using non-normal/nonlinear dominant balance arguments [3,4] (∼R−2 for the W95
model, as shown in [4], and∼R−1 for the W97 model, as it can be easily seen using arguments similar to
used for the ‘Stockholm models’ in [4]). The amplitude of the vortices is seen to be always the component o
amplitude in the NLOPs and therefore in Fig. 2 we show the ratiosu0/v0 andw0/v0 defining the ‘shape’ of the
optimal perturbations att = t0 as a function ofR. The optimal perturbations maximizing the linear energy gro
(LOP) havem(L)

0 = w
(L)
0 = 0 and, for sufficiently largeR, the ratiou(L)

0 /v
(L)
0 of the linear optimals scales likeR−1

for both models. From Fig. 2 we see that, for both models, the ratiou0/v0 of the nonlinear optimal is very simila
to the linear optimal ratio. However, although the NLOPs for the W97 model asymptotically converge to the
optimal shape becausew0 becomes exponentially small, for the W95 model the NLOP remains different from
linear one because thew/v component tends to a finite constant. This qualitative difference, however, does no
to affect the agreement of the computed scaling ofδ(R) with the scaling predicted by the non-normal/nonlin
dominant balance arguments.

2 We neglected the small window of conditional stability situated betweenR = 98.63 andR = 101.03.
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Fig. 2. Evolution withR of the ratiosu0/v0 (upper row) andw0/v0 (lower row) of nonlinear (NLOP) and linear (LOP) optimal perturbatio
for respectively the W95 (left) and the W97 (right) models.w0/v0 = 0 for the linear optimals and the curve is therefore not reported.

4. Summary

The scope of this study was to compute the minimum energy thresholdδ(R) and the associated nonline
optimal perturbations NLOP for low-dimensional systems of subcritical transition. We have demonstrate
necessary condition for a perturbation to be nonlinearly optimal, in the sense that it is the one of minimum
outside the basin of attraction of the laminar basic state, is that it realizes a local minimum for the pertu
energy i.e. dE/dt = 0 and d2E/dt2 � 0. For systems with energy preserving nonlinear terms the first cond
of optimality is equivalent to the condition〈u,LRu〉 = 0 which can be determined by the analysis of the lin
operatorLR and is independent on the amplitude of the perturbations. The enforcement of the optimality con
reducing the number of perturbations to be investigated, has allowed the computation ofδ(R) and the associate
NLOPs for two four-dimensional models of subcritical transition [7,8]. The analysis of the results reveals th
if, in general, NLOPs do not have the same symmetries of the linear optimal perturbations, it is still to be
that: (a) the projection of NLOPs in the subspace optimizing the linear growth has almost the same shap
linear optimal and (b) the minimum energy threshold asymptotically satisfy theRγ -scalings predicted by usin
arguments based on dominant balance of non-normal growth and nonlinear-feedback [3,4]. However, this
sets in only for relatively large values ofR. It was conjectured [4] that for real flows the scaling coefficien
less than−1 for largeR but recent experimental results [5] suggest that, (e.g. for pipe Poiseuille flow) it as
its upper limitγ = −1. However, in these experiments there is no attempt to optimize theshape of the initial
condition in order to attain theminimum threshold energy. It would therefore be interesting to know if it is poss
to get a lower scaling for the amplitude using initial conditions of optimized shape. This is the subject of
investigation.
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