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Abstract

For flows subject to subcritical instabilities the stability of the basic flow can be guaranteed only for perturbations of en-
ergy lower than a critical threshold The computation of this threshold for the Navier—Stokes equations is still out of reach.
More surprisingly, this computation has not been attempted for low dimensional models of subcritical transition. In this Note
guidelines are provided for the computation of the minimum energy threshatd of the corresponding nonlinear optimal
perturbations. In particular it is demonstrated that nonlinear optimal perturbations are constrained by the requirement that they
must satisfy a local minimum condition. These results are applied to the analysis of four-dimensional models proposed in
F. Waleffe, Phys. Fluids 7 (1995) and Phys. Fluids 9 (19%9@}ite thisarticle: C. Cossu, C. R. Mecanique 333 (2005).
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Résumé

Une condition d’ optimalité pour le seuil minimal d’énergie danslestransitions sous-critiques. Dans le cas d'instabilité
sous-critique, la stabilité de I'écoulement de base peut étre garantie seulement pour des perturbations d'énergie inférieure at
seuil critiques. Le calcul direct de ce seuil est inaccessible pour les équations de Navier—Stokes. Plus surprenant est le fait que
ce calcul n'a pas été tenté pour des modeles de basse dimension de transition sous-critique. Dans cette Note des indication
générales sont fournies pour le calcubidet des perturbations non linéaires optimales associées. Notamment, nous démontrons
gue les perturbations non linéaires optimales doivent satisfaire une condition de minimum local. Ces résultats sont appliqués a
I'analyse de systémes a quatre dimensions proposés in F. Waleffe, Phys. Fluids 7 (1995) et Phys. FluidsPb(t 3%#). cet
article: C. Cossu, C. R. Mecanique 333 (2005).
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1. Framework

In many shear flows, fully developed turbulence is observed at sufficiently high Reynolds nReem though
the laminar basic state is linearly stable to infinitesimal perturbations. Examples of such so-called subcritical insta-
bility include plane Couette flow, (which is linearly stable for R)land pipe Poiseuille flow. In such circumstances,
asymptotic stability (i.e. the decay of all the disturbances -as o) of the basic state is guaranteed only if the
energy of the allowable perturbatiofiss lower than some threshodd In general is a function of the Reynolds
numberR. For sufficiently smallR < Rg, § is infinite and the flow is said to be globally stable in that all distur-
bances, whatever their initial amplitude, decay asymptotically in time. Various analyses have provided [1] bounds
on Rg, as well as [2] bounds o8(R). Indeed, various studies [3-5] have attempted to identify a power law rela-
tionship betwee and R asR — oo of the forms¥/2 ~ R” for some scaling coefficient. Nevertheless, despite
great progress, an important gap often exists between upper and lower bounds provided by different studies and &
formal theory predicting the dependenceiain R still seems out of reach for real flows determined by solutions
of the Navier—Stokes equations. However, the situation is very different for low order reduced models which have
been developed to mimic different aspects of subcritical transition in real flows. The principal aim of this Note is
to compute, for specific low dimensional models, threshold amplitude as a funct®a®fvell as the associated
optimal nonlinear perturbations. Therefore, we examine the nonlinear asymptotic stability of a linearly stable basic
stateU to a general perturbatian Defining the total generic flow field ag; = U + u, evolution equations can be
derived foru, which take the general form [1]:

du/dr = Lz u+N(u) (1)

The laminar basic state; = U of course corresponds to= 0. In (1), L is a linear operator which depends
on U and R while AV is a nonlinear operator which we assume to be homogeneous, in the sens&@hat 0.
The initial value problem corresponds to considering the evolutianwith time, which evolution is in general a
function of R and the specified initial conditiong given atrg. Naturally it is also possible to consider the energy
£ of this perturbation, which may be defined in the conventional way using an appropriate inner product:

Elu@, uo, B)] =(u,u)/2,  Eo(uo) = (Uo, Uo)/2 )

Taking the inner product of (1) with yields the evolution equation f@r [1]:

d& /dr = (u, Lg u) + (u, V' (u)) ®)

It is important to note the Navier—Stokes equations [1,2], and most low dimensional models of subcritical tran-
sition [4] have the valuable property that the relevant nonlinear tevirare ‘energy preserving’, in the sense

that (u, A/ (u)) = 0 Yu. The basin of attractioy of the laminar basic flomu = 0 at fixed R is given by the set

of initial perturbationsug such that lim, o £[u(z, ug, R)] = 0. Since we assumid linearly (strictly) stable, its

basin of attraction has non-zero measure. The complementabjpsistmade of initial perturbations for which
lim;_ o E[U(t, Ug, R)] # 0. This set has zero measure if the laminar basic flow is globally stable. Whdras
non-zero measure, thainimum threshold energy can be defined a&(R) = miny,ez4, £o(Uo). The nonlinear opti-

mal perturbation (abbreviated henceforth as NLOP) is defined as the initial perturbation for which the minimum
3 is attained. In the following we will refer also tnear optimal perturbations, denoted by LOP, maximizing the
linear energy growtla?(L)/géL) computed on the linear system@ /dr = Lz u® over all the possible perturba-

tions and over all possible times [6]. The maximum linear energy growth can be large if the linear ofgrator

is non-normal (i.e. if it does not commute with its adjoint). It has been suggested that the potential for large tran-
sient growths dur to non-normality is a key mechanism in subcritical transition (see among others [6,3,2]). Linear
optimals have been therefore computed for a variety of flows and are reviewed in [2].
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2. A necessary condition for nonlinear optimality

Not all possible initial perturbations are suitable candidates to be nonlinear optimals (NLOP). Consider a
neighborhoodAr « 1 of 1. We expand the perturbation energy&si(ro + At, Ug, R)] = &y + At (dE/dt)o +
(A12/2)(d2€ /dr?)o + O(Ar3). If ug € Ug (the complementary set to the basin of attractSanof the laminar basic
state), andd€ /dr)g < 0 thenu(rg+ At, Ug, R), with Ar > 0 also belongs téfz because it is on the same trajectory
in phase space, and has a perturbation engrgyo. Thereforeug is not an NLOP because it has not the minimum
£ in Ug. Analogously, in the cas@l /dr)p > 0, a similar argument witiar < 0 demonstrates thai is also not
an NLOP. Indeed all NLOPs must be members of theZetof perturbations with 8/d: = 0 and furthermore
satisfy d€/dr?(t0, uo, R) > 0. By substitution in the evolution equation (3), it is easily verified that perturbations
which are inZx must satisfy the conditiofu, L u) + (u, A'(u)) = 0. For systems with energy-preserving non-
linear terms, the perturbations belongingZq satisfy the simpler conditiofu, £z u) = 0, a condition which is
independent of the amplitude o§. This proves that:

Theorem 2.1. In a nonlinear system with energy preserving nonlinear terms, a necessary condition for ug to be a
nonlinear optimal perturbation isthat (ug, £z ug) = 0 and d2€ /dr2(to, ug, R) > 0.

3. Application to low dimensional models of subcritical transition

Several low dimensional models, reviewed in [4], have been considered to investigate qualitative features of
subcritical transition. These models usually share properties of the Navier—Stokes equations that are thought to
be relevant in subcritical transition. These include: (a) They admit the linearly stable laminar fixed poiht
VR; (b) the linear operatof is non-normal in the sense defined above; (c) nonlinear terms preserve energy.
We compute the minimum threshold enedygnd the associated nonlinear optimal perturbations for two of these
models making use of the optimality condition stated in the previous section. The model systems we consider
are four-dimensional. One, referred to henceforth as W95, has been inspired by the modeling of self-sustained
processes in wall turbulence [7] while the other, referred to henceforth as W97, is inspired from a low dimensional
Galerkin projection of the Navier—Stokes equations for a Couette-like shear flow [8]. Both models describe a non-
linear self-sustained process using the amplitude of streamwise vartities amplitude of streamwise streaks
the amplitude of sinuous perturbations of the streakand the amplitude of the mean sheainduced by these
perturbations. The 4D state vector is defined as{m, u, v, w}T and the linear and nonlinear operators are defined
as:

—k,%/R 0 0 0 Om W2 — oy uv
0 —k,f/R oy 0 ) _ —oywl+o,mv
Ee=1 ¢ 0 —kR 0 P Nw= oy w2 @)
0 0 0 —ki/R—om (op U —0Opm—oyv)w

The same coefficients as those considered in [7] and [8] have been séld@tteghhase space dynamics of these
systems have already been investigated in [7,8]. For model W95, a saddle-node bifurcation takesplace at
98.63. The global stability of the basic flow is lost betweRn= 98.63 andR = 10103 where another attractor
exists with a minute basin of attraction. The basic flow is again globally stable befRveet0103 andR = 356.
Subsequently it loses again its global stability because a stable limit cycle appears and persists f&r. loger
model W97 the first saddle-node bifurcation isfRat= 104.84. The ‘lower branch’ solution is a saddle while the

1 For the W95 model: [k, ku, kv, kw] = [3.16,3.16,3.16,3.87), and [om,ou. 0, 0w] = [0,1,1,0.5]. For the W97 model:
[km s ku, ky, kyw] =[1.57,2.28,2.77, 2.67], and[oy,;, 0y, 0y, 0] = [0.31, 1.29, 0.22, 0.68].
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Fig. 1. Minimum threshold amplitude cur\(éa)l/Z(R) for respectively the W95 (left) and the W97 (right) model.

upper branch is an unstable fixed point, which becomes stalie; at 13806, thus rendering the stability of
the laminar basic flow only conditional fa&@ > Rs. The perturbation energy is defined using the standard inner
product as€ = (m? + u? + v2 + w?)/2 and it is easily found that the vectors belonging?p must satisfy:

ouiguo — [k2mf + kZu + k2v§ + (Roy + k2)wg]/R =0 (5)

Non-trivial solutions of Eq. (5) exist forv > 0 andR > Rg = 2k, k,/o,. For the W95 modeRg = 20 while

Rg = 4.89 for the W97 model. We computed the threshbldnd the corresponding NLOPs by selecting initial
conditions on a sphere of sufficiently Iy and then integrating the equations uptgx = 100R. Only ‘potentially
optimal’ initial conditions in theZy set were considered. We randomly seleatgdug andwg and then retrieved

vo solving Eq. (5) which is a second order algebraic equationpirReal solutions fowg are found only when

the discriminant of that equation is non-negative, which strongly reduces the number of initial conditions to be
investigated. We then rescaled the solutionggaand excluded initial conditions for which?é/dt2 < 0. For
sufficiently low & all the solutions end in a neighborhood of the laminar basic statg.,y) < ¢ demonstrating

that the sphere is completely contained in the basin of attraction of the laminar basic state. The initial energy
&o is then increased by small stepso and the computations repeated at each step. The minimum threshold

is found as the minimum value &, for which at least one solution does not satisfy the condifigfay < ¢.

The corresponding initial condition represents the NLOP. This kind of computation was repeated for vatues of
ranging from 300 to 3000 for the W95 modeind from 100 to 1000 for the W97 model. The minimum threshold
amplitude curves/28(R) are shown in Fig. 1. These curves, originatingRat, attain, for sufficiently largek, the
asymptotic scalings, predicted using non-normal/nonlinear dominant balance arguments 8, 4]for the W95

model, as shown in [4], an¢t R~ for the W97 model, as it can be easily seen using arguments similar to those
used for the ‘Stockholm models’ in [4]). The amplitude of the vortices is seen to be always the component of largest
amplitude in the NLOPs and therefore in Fig. 2 we show the ratygso and wo/vo defining the ‘shape’ of the
optimal perturbations at= 7o as a function ofR. The optimal perturbations maximizing the linear energy growth
(LOP) havemé“ = wé“ = 0 and, for sufficiently large, the ratiOME)L)/véL) of the linear optimals scales like—!

for both models. From Fig. 2 we see that, for both models, the #atiog of the nonlinear optimal is very similar

to the linear optimal ratio. However, although the NLOPs for the W97 model asymptotically converge to the linear
optimal shape becaus& becomes exponentially small, for the W95 model the NLOP remains different from the
linear one because the/v component tends to a finite constant. This qualitative difference, however, does not seem
to affect the agreement of the computed scaling (@) with the scaling predicted by the non-normal/nonlinear
dominant balance arguments.

2 We neglected the small window of conditional stability situated betw2en98.63 andR = 10103.
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Fig. 2. Evolution withR of the ratiosug/vg (upper row) andvg/vg (lower row) of nonlinear (NLOP) and linear (LOP) optimal perturbations
for respectively the W95 (left) and the W97 (right) modeis,/vg = O for the linear optimals and the curve is therefore not reported.

4. Summary

The scope of this study was to compute the minimum energy thresti@ld and the associated nonlinear
optimal perturbations NLOP for low-dimensional systems of subcritical transition. We have demonstrated that a
necessary condition for a perturbation to be nonlinearly optimal, in the sense that it is the one of minimum energy
outside the basin of attraction of the laminar basic state, is that it realizes a local minimum for the perturbation
energy i.e. d/dr = 0 and d€/dr? > 0. For systems with energy preserving nonlinear terms the first condition
of optimality is equivalent to the conditiofu, Lzu) = 0 which can be determined by the analysis of the linear
operator g and is independent on the amplitude of the perturbations. The enforcement of the optimality condition,
reducing the number of perturbations to be investigated, has allowed the computati@®) aind the associated
NLOPs for two four-dimensional models of subcritical transition [7,8]. The analysis of the results reveals that even
if, in general, NLOPs do not have the same symmetries of the linear optimal perturbations, it is still to be noticed
that: (a) the projection of NLOPs in the subspace optimizing the linear growth has almost the same shape of the
linear optimal and (b) the minimum energy threshold asymptotically satisfyrthecalings predicted by using
arguments based on dominant balance of non-normal growth and nonlinear-feedback [3,4]. However, this scaling,
sets in only for relatively large values &. It was conjectured [4] that for real flows the scaling coefficient is
less than—1 for large R but recent experimental results [5] suggest that, (e.g. for pipe Poiseuille flow) it assumes
its upper limity = —1. However, in these experiments there is no attempt to optimizehtige of the initial
condition in order to attain thesinimumthreshold energy. It would therefore be interesting to know if it is possible
to get a lower scaling for the amplitude using initial conditions of optimized shape. This is the subject of current
investigation.
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