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We consider the spatio-temporal development of the long-wave and short-wave instabilities in a pair
of counter-rotating vortices in the presence of a uniform axial advection velocity. The stability
properties depend upon the aspect ratio a/b of the vortex pair, where a is the core radius of the
vortices and b their separation, and upon W, /U, the ratio between the self-induced velocity of the
pair and the axial advection velocity. For sufficiently small Wy, /U, the instabilities are convective,
but an increase of W,/ Uq may lead to an absolute instability. Near the absolute instability threshold,
spatial growth rates are larger than those predicted by temporal stability theory. Considering
aeronautical applications, it is shown that instabilities of the type considered in this communication
cannot become absolute in farfield wakes of high aspect ratio wings. © 2000 American Institute

af Physics. [S1070-6631(00)01705-0]

Reduction of aircraft separations at landing and take-off
leads one to consider the dissipation mechanisms of the vor-
tex wakes.! Sufficiently far from the aircraft, these wakes
amount to a pair of counter-rotating vortices, and two types
of instabilities are thought to participate in their dissipation;
the long-wave instability first considered by Crow? and the
short-wave instability characterized by Moore and Saffman®
and Tsai and Widnall.* These instabilities have been fully
described in the framework of temporal stability analysis
which predicts the ‘‘natural’’ growth of perturbations in the
reference frame of the vortex pair. Such a temporal develop-
ment has been observed in laboratory experiments®® and in
numerical simulations.” Forcing of these instabilities by on-
board control devices is envisaged to accelerate the wake
dissipation.%®® This leads one to consider the spatio-
temporal development of the perturbations in the frame of
the aircraft. Two situations may occur.'!! If the instabilities
are convective, perturbations are amplified while being ad-
vected but do not amplify in the frame of the airplane. In this
case one may perform a spatial stability analysis, which de-
scribes the response of the wake to harmonic forcing. On the
other hand, if the instabilities are absolute, perturbations are
amplified in place, eventually leading to self-sustained oscil-
lations. Recent analyses have revealed the presence of abso-
lute instabilities in isolated vortices in the presence of core
axial flow.!?"'* The scope of the present communication is
the evaluation of the absolute or convective nature of the
long and short-wave instabilities of a vortex pair in the pres-
ence of a uniform axial advection, and the computation of
their spatial growth rates in the convective regime.

Base flow. We consider a pair of counter-rotating vorti-
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ces, of core radius a, circulation £ T, separated by a distance
b. The vortex cores are assumed to have constant vorticity
(Rankine-type vortices). The vortices are moving in a direc-
tion perpendicular to their axes with a self-induced velocity
Wy=T727b [see Fig. 1(a)], and they are advected along
their axis with a velocity U [Fig. 1(b)]. This base flow may
then be characterized by the two dimensionless parameters
alb and Wy /U,.

Temporal and spatio-temporal stability. In principle, an
inviscid stability analysis consists of linearizing the Euler
equations around a base flow such as the vortex pair de-
scribed above. After decomposing the perturbations inte nor-
mal modes proportional to e’**~%" a dispersion relation
D(k,w;alb,Wy/Uy) which relates the pulsation w and wave
number k& may be obtained, given a/b and Wy /Uy, As it is
usually very difficult to obtain explicitly the “‘full” disper-
sion relation derived from the linearized Euler equations, one
is lead to consider some physically relevant asymptotic limit
in which the dispersion relation can be obtained analytically.
In the following two asymptotic limits will be considered:
the long- and the short-wave limits obtained by assuming
(a/b)*<1 and, respectively, |kb|=0(1} and |ka|=0(1).

The temporal stability analysis assumes k real and w
complex. The temporal growth rate is given by the imaginary
part w; of the pulsation. Galilean invariance leads to inde-
pendance of the temporal growth rate upon the frame of
reference, 01! consequently w;(k;a/b) does not depend upon
Wy /Uy, We will denote by w?:mx(a/b) the maximum tem-
poral amplification over all real wave numbers k, given a/b.
As mentioned for instance in Refs. 10 and 11, the abso-
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FIG. 1. Vortex pair base flow. (a) View in a plane orthogonal to the axis of
the vortices, (b) side view.

lute or convective nature of the instabilities may be deter-
mined through inspection of the saddle points (&g, wy) which
satisfy the system,

dwldk(ky,wy;alb,Wy/Uy) =0, (1)
D(kg,wq;alb,Wo/Uy)=0. 2

A necessary condition for absolute instability is that one can
find a saddle point (&, wp) such that wgy;>0. This condition
is not sufficient, and the saddle point must also verify a cau-
sality condition; it must result from a ‘‘pinching”” between
spatial branches coming from opposite sides of the complex
k-plane. These two conditions constitute the Briggs—Bers
criterion (see Refs. 10,11). When this criterion is not verified
the instability is convective and the spatial stability analysis
may be performed by assuming e real and k complex. The
spatial growth rate is given by —k;, and we denote
kf,max(alb; W, /U,) as the maximum spatial growth rate over
all w, given a/b and W,/ Uy. In the limit Wy /U¢—0, spatial
results can be related to temporal ones by means of an
asymptotic expansion of the dispersion relation,!!

K axalb)=— ol . (alb)IU,. (3)

1, max
Relation (3) is equivalent to Gaster’s relation (see Ref. 11).
In the following this relation will be used in order to com-
pare the maximum amplification rates kﬁmﬂ(a/b;wgl Uyg)
predicted by the spatial theory and the corresponding tempo-
ral results.

Short-wave instability. The short-wave instability, first
considered by Moore and Saffman® and Tsai and Widnall,*
develops on wavelengths of the order of the vortex core, i.e.,
|ka|=0(1). This instability arises in the neighborhood of
wave number values k. where a resonance condition occurs
between two inertial waves of one vortex and the straining
field induced by the other vortex. The dispersion relation is
derived in Refs. 3 and 15 by using an asymptotic method,
assuming a weak strain [which is equivalent to consider
(a/b)?<1). The addition of a uniformn advection U leads to
a “‘Doppler shift”” of the pulsation from  to w— Uyk. Con-
sidering the dimensional wave number and pulsation, the dis-
persion relation is

2ma*
r
Temporal stability ana]ysisg"4 predicts the existence of a nar-
row band of unstable wave numbers centered on each k.,
with a width |ka—k.a|<(a/b)*R/Q and a maximal ampli-
fication rate w;{max=l"/(2 mb2)R. The coefficients @ and R

2
) (w—kUp)2=Q%ka—k.a)?—(a/b)*R%:.  {4)
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FIG. 2. Short-wave instability. Absolute and convective regions. The ratio
of spatial to temporal growth rates is displayed in the convective region,

have been determined as functions of k. in Ref. 4. The first
unstable band is centered at k.a=2.50 and corresponds to
R=1.142 and Q=0.266. Other unstable bands are centered
at larger wave number values k., and correspond to similar
values of R (and hence similar growth rates) and smaller
values of Q. In Refs. 3 and 4, dispersion relation {4) is solved
only for real values of k, but the asymptotic methods used to
derive it remain valid for complex k. Moreover, this disper-
sion relation is guadratic in k and ® and its convective/
absolute and spatial stabilility analyses are straightforward.
Following, for instance, Ref. 16. pp. 276-279, one may
verify that, applying the Briggs—Bers criterion to dispersion
relation (4), the instability is absolute if

Wo!Up>Q™'(alb). (5)

In the convectively unstable regime it is found that the ratio
between the spatial growths given by the spatial and the
temporal theory is

__k;.Fi“;’x_=[l_Q2(ﬂ)2(£) -
(= w;{ max Uy) Uy b
Figure 2 shows the results for the first band of unstable wave
numbers. The absolute (gray shaded) and convective (white)
regions are depicted in the (W,/U,, a/b) plane, and the
ratio given by Eq. (6) is displayed in the convective region.
As expected, when W,/Uyz—0 the instability is convective
and there is almost no difference between spatial and tempo-
ral results. When Wq /U is increased, the spatial theory pre-
dicts growth rates which are larger than the growth rates
converted from temporal theory. Near the absolute instability
threshold, large differences can be attained. For other bands
of unstable wave numbers, Eq. (5) indicates that absolute
instabilities occurs at larger values of W, /U,

Long-wave instability. The long-wave instability, first
considered by Crow,? corresponds to symmetrical displace-
ments of the vortex centerlines on scales such that [kb|
=0(1), when a/b<1. Crow? modeled the vortices as two
vortex filaments and computed their velocities with the
Biot—Savart law and the cutoff approximation. Crow’s deri-
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vation is also reproduced by Saffman (pp. 235-238 of Ref.
15). After replacing the pulsation w by w— & Uy to account
for the uniform axial advection, the dispersion relation given
in Refs. 2 and 15 takes the form,

(27752

2
T )(w—kU0)2+(l~¢+m)(1+x—w)=‘0. 7N

In this relation 4 and y are functions characterizing the mu-
tual straining of the vortices, and the function w accounts for
the self-induced rotation of the vortices. These functions
were expressed by Crow as Biot—Savart integrals, with real
k. We extend the validity of dispersion relation (7) for com-
plex k as follows. First, it has been shown®®!5 that the func-
tion @ corresponds to the pulsation of a bending wave on an
isolated vortex. An expression of this pulsation for |ka|<€1
and complex k is given in Ref. 13,

(kb 2

1
w= In— —Ins—y+ ®)

a

7 (s T )
where s is the sign of &, (real part of £} and y=0.577 is
Euler’s constant. Then, functions ¢ and y can be evaluated
by solving a Laplace equation in the potential flow surround-
ing one vortex and matching the solution with a displaced
vortex line, as suggested in Ref. 9. This leads to the follow-

ing expressions:
=skbK (skb)+ (kb)*Ky(skb), (9)
x=skbK,(skb), (10)

where K;,K; are modified second kind Bessel functions.
With these expressions, the dispersion relation (7) is analytic
in the complex half-plane defined by k,>0, which is suffi-
cient for the spatio-temporal stability theory to apply.'”®
Moreover, as expected, for real k it corresponds to the ex-
pressions given by Crow? and Saffman.’® The temporal sta-
bility analysis®®>'>"" shows the existence of an instability
domain for |kb|=0(1). For moderate values of a/b, the
maximal temporal growth rate is?1 w{mx(alb)
~0.8T/(2mb?).

A combination of Egs. (1), (2) and (7} shows that the
wave numbers &, of the saddle-points are solutions of

WO 2 ' [ i 2
0. [(1-¢+w)x'—-w') (¢ —o') (1 +x—w)]
0

+H(1— ¢+ w@)(1+x~w)=0, (11

where ' denotes the differentiation with respect to kb. The
absolute/convective and spatial stability analyses of the long-
wave instability were performed by numerically solving Egs.
(7) and (11) in the complex k-planc using a standard
Newton—Raphson method, When applying the Briggs—-Bers
criterion both conditions presented above were taken into
account. Figure 3 displays the absolute (gray shaded) and
convective (white) regions in the plane of parameters, as well
as the ratio between the spatial and temporal growth rates
[see Eq. (6)] in the convective region. As found in the case of
the short-wave instability, the spatial growth given by spatial
theory may be larger than the one given by temporal theory.
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FIG. 3. Long-wave instability. Absolute and convective regions. The ratio
of spatial to temporal growth rates is displayed in the convective region.

Note that, contrary to the short—wave case, a finite ratio
Wy /Uy>>0.14 is now needed to promote absolute instability
in the limit a/b—0.

As an illustration, Fig. 4 shows the most amplified spa-
tial mode corresponding to a/b=0.15 and Wy/U,=0.166.
The displacements of the vortex centerlines in the z and y

direction are such that>'>!7

it (12)
y 1+y—w

where y=ye'®*~¢) and 7=2¢**"“Y_ In the spatial case,
this ratio is complex, which leads to a slight helical shape for
the vortices, as it can be observed in Fig. 4.

Application. Considering aeronautical applications,
equating the induced drag and the wake kinetic energy for a
pair of Rankine vortices leads to**'® a/b=~0.1. If U., de-
notes the aircraft velocity, one has

)
4TAR\ b

where C; is the lift coefficient, AR the wing aspect ratio and
b, the wing span (note that U,, differs from the axial veloc-
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FIG. 4. Most amplified long-wave spatial mode for a/b=0.15 and
Wo ! Ug=0.166. Perspective and top views.
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ity Ug because the plane of the wake is tilted with respect to
the flight axis). Considering an elliptically loaded wing
(b/bg=m/4) of high aspect ratio, one obtains Wy/U,
~(0.13C, /AR. For a conventional transport aircraft in land-
ing configuration, C;~2 and AR= 10, thus giving W,/U,
~(2.026. We conclude that, for high aspect ratio wings, the
instabilities considered in this communication are convective
and the spatial growth rates are very close to temporal ones.
On the other hand, in the wake of low aspect ratio wings or
high lift devices, the temporal analysis may fail to provide a
good description of the development of these instabilities
and absolute instabilities could take place.
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