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Via della Vasca Navale 79, I-00146 Roma, Italy

(Received 6 November 1998, and in "nal form 6 September 1999)

The "rst instability of a spring-mounted, damped, rigid circular cylinder, immersed in a viscous
#ow and free to move in a direction orthogonal to the unperturbed #ow, is investigated by
a global stability analysis. The #ow is modelled by the full Navier}Stokes equations. For low
ratios of the #uid density to the structure density, the von Karman mode is always the critical
one and the critical Reynolds number, about 47, is nearly the same as for a stationary cylinder.
In this case, for low structural damping, two complex modes are active and chaos is possible
near the bifurcation. For higher density ratios, the critical Reynolds number decreases to less
than the half the critical Reynolds number for a stationary structure. In this case, only
a complex mode is active and chaotic behaviour does not seem to be possible near the
bifurcation threshold. ( 2000 Academic Press
1. INTRODUCTION

IN 1985, SREENIVASAN OBSERVED di!erent chaotic transition scenarios in the circular-cylinder
wake at low Reynolds numbers. These observations led to a number of studies to "nd out if
a low-dimensional chaotic attractor could explain the turbulent dynamics in open #ows
such as wakes, mixing layers and boundary layers. Van Atta & Gharib (1987) recognized
that aeroelastic e!ects could also play a role in producing chaotic behaviour. Since then, the
#uid-dynamics community has concentrated on the problem of the wake of a stationary
circular cylinder and on its dynamics; Williamson (1996) gives a review on recent advances
in this "eld. For this problem, it is now well established that the "rst instability is a Hopf
bifurcation (Mathis et al. 1984; Sreenivasan et al. 1987; Jackson 1987) which occurs at
a Reynolds number of about 47 and a Strouhal number slightly less than 0.12. At the onset
of this global instability, a "nite region of the near wake is absolutely unstable (Monkewitz
1988; Huerre & Monkewitz 1990). Olinger (1990) attributed the early observation of
Sreenivasan to three-dimensional e!ects, while Abarbanel et al. (1991) suggested that "nite
size e!ects of the wind tunnel may also have been relevant. Considering moving cylinders,
Olinger & Sreenivasan (1988) studied the nonlinear dynamics in the wake of an oscillating
cylinder at low Reynolds numbers in the case of externally imposed oscillations. They
observed a period doubling cascade leading to chaos and deduced a strong analogy with the
0889}9746/00/020183#14 $35.00/0 ( 2000 Academic Press
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sine circle map dynamics. Concerning the study of vortex-induced vibrations of blu! bodies,
the aeroelastic community has been interested mainly in the high Reynolds-number regime,
where one usually has to resort to some empirical modelling of the #uid}structure interac-
tion [see, for instance, Blevins (1991)].

In this study the "rst instability of the aeroelastic system composed of a rigid circular
cylinder immersed in a viscous #ow is investigated numerically by a global (in the sense
de"ned by Huerre & Monkewitz 1990) stability analysis. The cylinder is spring-mounted,
damped, and free to move in the direction perpendicular to the undisturbed #ow. The #uid
is modelled by the full two-dimensional Navier}Stokes equations without resorting to any
empirical modelling. The main objective of the present analysis is to study the spectrum and
the linear modes of the coupled system near the global instability threshold. The linear
analysis will provide a description of the &&active'' modes that interact nonlinearly near the
bifurcation, and is therefore a necessary step before going to the nonlinear analysis of
vortex-induced vibrations at low Reynolds number which may explain the observations of
Van Atta and Gharib (1987).

An integro-di!erential vorticity-only formulation, that uses Wu's integral representation
of the velocity "eld (Wu & Thomson 1973) and integral constraints on the vorticity "eld
(Wu 1976), is used to represent the Navier}Stokes equations. This approach allows one to
limit the numerical-solution domain to the vortical region of the #ow. The formulation,
coupled with the structural motion equations, is then discretized to obtain a "nite-dimen-
sional system of ordinary di!erential equations with quadratic nonlinearities. The state
vector of this discretized system is composed of the vorticity values at the grid nodes in
the #uid domain, a global circulation variable, and the cylinder position and velocity. The
parameters of the system are the Reynolds number based on the cylinder diameter
Re"D;

=
/l, the #uid/solid density ratio n"o

f
/o

c
, the structural natural circular frequency

u
c
, and the structural damping c. We consider the Reynolds number Re as a &&purely #uid''

parameter because it is the only parameter governing the system when the structure is
stationary. The structural natural circular frequency u

c
and damping c are the &&purely

structural'' parameters as they rule the system in the absence of #uid. The #uid/solid density
ratio n is the coupling parameter. For every set of parameters considered, the equilibrium
solution is found and then its stability is determined by numerically evaluating the spectrum
of the linearized operator. The algorithm has been validated for the stationary circular
cylinder (Cossu 1997; Cossu & Morino 1997).

For low density ratios n, two signi"cant modes are identi"ed: the &&nearly-structural''
mode, and the von Karman mode. The nearly-structural mode corresponds to eigenvalues
that, in the limit nP0, tend to the characteristic (complex) frequency of the structure in the
absence of #uid. The von Karman mode corresponds to eigenvalues almost identical to the
critical eigenvalues of the &&purely #uid'' system with a stationary structure. The two modes
are described for di!erent structural natural frequencies; the in#uence of the density ratio on
their stability is also analysed.

The mathematical formulation of the problem, i.e., the de"nition of the structure and
#uid models, is introduced in Section 2. The discretization of the coupled system is
brie#y discussed in Section 3. The linear stability problem is posed in Section 4 and the
numerical results are discussed in Section 5. The main conclusions are summarized in
Section 6.

2. MATHEMATICAL FORMULATION

The rigid cylinder is spring-mounted, damped and immersed in a uniform incompressible
viscous #ow of velocity ;

=
i and is free to move in the direction j orthogonal to the
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undisturbed #ow. We assume the #ow to be two-dimensional and the #uid to be initially at
rest. We use a polar reference system (r, h) centred in the cylinder centre. The lengths are
made dimensionless on the cylinder radius R, the velocities using the undisturbed #ow
velocity ;

=
, and the time using the convective scale R/;

=
.

2.1. STRUCTURE MODEL

The law of motion of the rigid cylinder, mounted on a spring and subject to viscous
damping and to the #uid action is

d2y
c

dt2
#c

dy
c

dt
#u2

c
y
c
"

1

2
n c

L
(t), (1)

where y
c
is the position of the centre of the cylinder with respect to its equilibrium solution

in the absence of #uid, u
c
is the dimensionless structural natural circular frequency, c the

dimensionless structural damping [equal to twice the structural damping factor multiplied
by the structural natural frequency u

c
; see for instance Blevins (1991)], n the #uid/solid

density ratio, and c
L
the lift coe$cient of the cylinder per unit length. The lift coe$cient may

be obtained [see, for instance, Patel (1978)] as a function of the vorticity distribution f on
the body surface (r"1 in dimensionless polar coordinated) and its normal gradient Lf/Lr at
the wall:

c
L
"

4

Re P
2n

0
Af!

Lf
LrB

r/1

cos hdh, (2)

where the f term comes from the shear stress contribution and the Lf/Lr from the pressure
contribution.

2.2. FLUID MODEL

The #uid motion is governed by the continuity equation and the vorticity-transport
equation, which is fully equivalent to the Navier}Stokes equations,

Lf
Lt
#v '$f"

2

Re
+2f. (3)

In cylindrical coordinates, the vorticity transport equation reads

Lf
Lt

#vh
1

r

Lf
Lh

#vr
Lf
Lr

"

2

Re
+2f. (4)

The boundary conditions, enforced on the velocity at the cylinder boundary (r"1 in
dimensionless coordinates), are

v (1, h)"v
B
, (5)

where v and v
B

denote the velocity of the #uid and of the body boundary. We write the
equations in a frame of reference rigidly connected with the structure. In this frame the body
velocity v

B
is always zero, but the #uid velocity at in"nity is seen as v

=
"i!v

c
j, with

v
c
"yR

c
(in dimensionless variables;

=
"1). The vorticity f does not change from one frame

to another, as the structure does not rotate but simply translates.
For two-dimensional #ows, the formulation used here is a modi"cation of the vortic-

ity}stream function method, in which the t}f relationship

+2t"!f (6)
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is inverted to yield an integral representation of the velocity in terms of the vorticity. In
contrast to Wu (1976, 1982), in order to invert equation (6) and obtain the desired integral
form of the t}f relationship, we use an in"nite-space formulation and extend equation (6) to
the solid region, with f obtained from the prescribed motion of the solid body (assumed to
be incompressible). Thus, inverting equation (6) extended to the whole R2, we have

t (x)"t
=
!PPR2

G(x, y )f (y ) dS(y), (7)

where G(x, y)"(1/2n) lnEx!yE is the fundamental solution of the two-dimensional
Laplace operator. Equation (7) states that if we know the vorticity in the whole space
R2 (i.e., in the #uid as well in the solid region), then we also know t (and hence the velocity)
in the whole space R2. Since the cylinder is in pure translation (without rotation) with
respect to the undisturbed #ow, f"0 in the solid region. From the de"nition of the stream
function and equation (7) one obtains an integral representation of the velocity "eld v in the
#ow as a function of the vorticity "eld:

v(x)"v
=
#k]PPR2

$G(x, y) f(y) dS(y), (8)

where $ denotes the gradient with respect to the variable x, and k"i]j is the unit vector in
the direction normal to the (x, y) plane. In polar coordinates, in a cylinder-based reference
frame, equation (8) yields

vh"eh ' k]PPR2

$G fdS!sin h!v
c
cos h,

vr"e
r
' k]PPR2

$G fdS#cos h!v
c
sin h. (9)

Within the context of the integral formulation used here, the boundary condition on the
cylinder surface, equation (5), needs be imposed only along one direction, because only the
f scalar "eld has to be determined on the cylinder boundary. It should be noted that for
two-dimensional #ows, one may use either the normal or the tangential boundary condition
(Wu, 1976, 1982), whereas for three-dimensional #ows the normal boundary condition
appears more suitable [for a detailed discussion the reader is referred to Morino (1986)]. Let
us assume, in particular, the direction of the normal to the wall e

r
, which yields

e
r
' k]PPR2

$G f dS"!cos h#v
c
sin h. (10)

Enforcing this condition yields a zero-thickness layer of vorticity which immediately
di!uses, thereby ensuring that the tangential boundary conditions are satis"ed (Lighthill
1963, Batchelor 1967). All the results presented here are obtained using a projection
technique, related to the work of Wang & Wu (1986), which yields the same algorithm for
both the tangential and the normal approach. Finally, as shown by Wu (1976), in the case of
external two-dimensional #ows on a body of "nite extension, the conservation of total
vorticity must be enforced to obtain a unique solution when equation (10) is &&inverted'' in
order to determine the vorticity distribution on the cylinder boundary. This condition is
obtained by noting that, according to Kelvin's theorem, dC

=
/dt"0, where

C
=
(t)"PC

=

v ' dx"PPR2

f (y, t) dS(y). (11)
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Recalling that we have assumed the #uid to be initially at rest, we have C
=
(0)"0 and hence

C
=
(t)"0 for all t.

3. DISCRETIZED EQUATIONS AND BOUNDARY CONDITIONS

The above integro-di!erential formulation is discretized in space in order to obtain a set of
ordinary di!erential equations that will be studied by a classical dynamical-system ap-
proach. The computational domain extends from the cylinder surface to r

.!9
typically of

order of 50 cylinder radii. This domain is discretized in polar coordinates with a uniformly
spaced grid in the azimuthal coordinate h and an exponential stretch in the radial
coordinate r. The nodes where the vorticity is always negligible are not considered in the
computation. The state vector s of the discrete system is composed of the vorticity values in
the nodes in the vortical region (in the #uid), of the total vorticity C

E
outside the computa-

tional domain and of the circular cylinder position y
c
and velocity v

c
.

We can eliminate from the discretized vorticity-transport equation the velocity [using the
discretized form of equation (8)] and the vorticity at the body-boundary nodes [using the
discretized form of equation (10)], so as to obtain a vorticity-only formulation. As pointed
out above, enforcing the boundary condition yields a zero-thickness vortex layer which then
di!uses into a "nite-thickness one. In the discretized formulation, we combine the two
processes and assume that a "nite-thickness layer of vorticity is generated at once. This is
accomplished automatically by expressing the vorticity "eld as

f (x, t)"
NT

+
n/1

f
n
(t) f

n
(x), (12)

where f
n
(x) denotes a suitable "nite-element-like basis and f

n
(t) denotes the value of the

vorticity at the node n (imposing the boundary condition determines the layer of vorticity
connected with the values of f

n
at the boundary nodes). The issue of the boundary condition

discretization is treated in some detail in Cossu (1997) and Cossu & Morino (1997). Once
the vorticity values at the nodes on the cylinder surface are expressed as a function of the
state variables (i.e., of the vorticity in the "eld, the external total vorticity and the structure
position and velocity), we can proceed to discretize the vorticity transport equation.

The di!erential terms appearing in equation (4) are discretized using classical "nite
di!erence formulae fourth-order accurate except near the boundaries where they are
second-order accurate. We thus obtain, for the nodes x

i
inside the #uid

M+2f (x
i
)N"MDs#eD,

MLf/Lr(x
i
)N"MRs#eR,

M(1/r) Lf/Lh (x
i
)N"MTs#eT. (13)

The velocity "eld can be evaluated at each node by discretizing the integrals in equation (9),
the integrals being evaluated using BEM-like techniques, so as to obtain

Mvr(x
i
)N"MUR s#eUR,

Mvh(x
i
)N"MUTs#eUT . (14)

Finally, combining the discretized di!erential operators (13) [see Cossu (1997), or Cossu
& Morino (1997) for details], the discretized integral representation of the vorticity "eld
(14), the discretized version of the equation of vorticity conservation (11) and the equation of
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structural motion equation (1), with a discretized evaluation of the lift coe$cient, as given
by equation (2), one obtains the space-discretized system of equations for the state vector x

sR"c#As#b (s, s). (15)

4. GLOBAL STABILITY ANALYSIS

We denote by s
S

the steady-state solution of equation (15), which satis"es the equation

c#As
S
#b (s

S
, s

S
)"0, (16)

and is calculated by a sequential Newton}Raphson algorithm marching in the Reynolds
number. By symmetry considerations it is easily seen that this solution corresponds to
a zero displacement and zero velocity of the cylinder and to a velocity "eld symmetric with
respect to the axis centred in the cylinder centre and parallel to the undisturbed #ow. The
vorticity "eld associated with the steady-state solution s

S
is the same as in the case of

a stationary cylinder so that s
S

is a function of the Reynolds number but not of the other
parameters (u

c
, c and n). Setting s"s

S
#s

P
and recalling that s

S
satis"es equation (16), one

obtains

sR
P
"A

P
s
P
#b (s

P
, s

P
), (17)

with A
P
s
P
:"As

P
#b (s

S
, s

P
)#b (s

P
, s

S
). The matrix A

P
is the linearized discretized

Navier}Stokes operator that is recovered when terms of order higher than the "rst in the
perturbation vector s

P
are neglected. The eigenvalues of A

P
determine the linear (global)

stability of the system and its eigenvectors are the global modes. A
P
, and thus its eigenvalues

and eigenvectors, depend upon all the parameters of the problem (Re, u
c
, c, n). The full

spectrum of the &&purely #uid'' (stationary structure) system has been studied in some detail
(Cossu 1997) and con"rms the well-known result that two complex conjugate eigenvalues
cross the imaginary axis at a Reynolds number of about 47 with an imaginary part of about
u

0
"0)37 corresponding to a Strouhal number St"u

0
/n"0)117. When the cylinder is

free to move in the transverse direction, the system has two more degrees of freedom (the
cylinder position y

c
and velocity v

c
) and displays two additional eigenvalues with respect to

the stationary-structure case. In the absence of #uid, the system admits only the two
structural eigenvalues given by

j
s
"!

c
2
$iSu2

c
!A

c
2B

2
. (18)

In the presence of #uid, but for n@1, two &&nearly-structural'' eigenvalues with j\j
s
are

expected. The corresponding eigenvectors are structure-driven vorticity "elds in the wake.
As soon as one increases the #uid/solid density ratio n, the aerodynamic feedback on the
structure becomes more important and the whole spectrum is changed by this interaction.
Some interesting questions arise, as follows.

(a) Can the nearly-structural mode become critical as the density ratio n is increased?
(b) Does the critical Reynolds number increase or decrease by increasing the density

ratio n?
(c) How does the shape of the nearly-structural mode change if we change the frequency

ratio X
0
"u

c
/u

0
at a given Reynolds number?

(d) Is chaotic behaviour possible for the coupled system near the bifurcation threshold?

In the following, we try to partially answer these questions by numerically computing the
eigenvalues and eigenvectors of the discrete linearized operator A

P
for some suitable set of
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parameters. The number of parameters sets considered is limited because each test requires
signi"cant computational resources; however, we think that some insight into the problem
can be given from the results discussed below.

5. NUMERICAL RESULTS

The computational domain extends from the cylinder surface to 50 cylinder radii in the
radial direction and has been discretized with 96 intervals in the azimuthal coordinate and
with 48 intervals in the radial direction. As stated above, the grid nodes where the vorticity
is always negligible are not considered in the computation and thus the results were
obtained with 2762 nodes instead of 4512. The grid is shown in Figure 1. When the structure
is stationary, a critical Reynolds number of 47)0244 and a critical frequency of 0)369
(corresponding to a critical Strouhal number equal to 0)1174) are found. The eigenvalues
and eigenvectors of A

P
are numerically computed, with a QR algorithm, using the

LAPACK routines (Anderson et al. 1992). The rightmost part of the spectrum at the Hopf
bifurcation for the stationary-structure case is shown in Figure 2: the critical von Karman
eigenvalues are on the imaginary axis; the associated vorticity "elds are shown in Figure 3.
The von Karman mode shape has been extensively analysed (Jackson 1987; Noack & Eckel-
mann 1994; Cossu 1997) and the reader is referred to these works for further details.

5.1. INFLUENCE OF THE FREQUENCY RATIO

We consider how the frequency ratio X
0

a!ects the spectrum of the coupled system. The
parameter X

0
is the ratio of the natural circular frequency u

c
of the undamped (c"0)

structural oscillator in the absence of #uid to the circular frequency u
0

of the undamped
purely #uid &&oscillator'', i.e., the frequency of the critical mode at the Hopf bifurcation when
the structure is not allowed to move. We analysed the e!ect of X

0
on the spectrum for a low

density ratio n"1/7000 (approximatively steel in air) and a small structural damping,
c"0)01, so as to avoid the coalescence of the nearly-structural eigenvalues with the von
Karman eigenvalues. The Reynolds number was kept "xed at its critical value in
the stationary-structure case (Re

c
"47)024), where the critical eigenvalues were $iu

0
"

$0)368865 i. In Table 1, we report the numerical results for the two least stable pairs of
eigenvalues j

1,2
and j

3,4
. In the same table the &&structural'' j

s
eigenvalues, given by

equation (18), that would have been observed in the absence of #uid, are also reported.
Three frequency ratios were considered: the unitary ratio, the ratio X

0
"1)8 [used by

Schumm et al. (1994), to control the von Karman instability by forced transverse oscilla-
tion] and its inverse X

0
"0)55. Both the nearly-structural and the von Karman eigenvalues

are insensitive to the aeroelastic coupling and, for the set of parameters considered, the von
Karman mode is always the critical one.

When X
0
"1, the shape of the nearly-structural mode almost coincides with the von

Karman one (shown in Figure 3) except for a phase shift. This is con"rmed by the analysis of
Figure 4 where their vorticity normalized values (the shift has been set equal to zero in order
to compare the two modes) on the downstream symmetry axis are shown. If we were able to
&&suppress'' the von Karman mode and let the cylinder free to oscillate in the transverse
direction at the stationary-cylinder critical Reynolds number and the corresponding char-
acteristic Strouhal frequency, we would observe, for small oscillations, the same disturbance
vorticity "eld in the wake as that for a stationary-cylinder. It would be interesting to study
the nonlinear behaviour of the system for X

0
"1 because two nearly identical complex

modes interact nonlinearly with nearly identical characteristic frequencies, so that very
strong resonances are expected.



Figure 1. Grid used to discretize the Navier-Stokes equations. The grid nodes where the vorticity is negligible
are not included in the computational domain.

Figure 2. Rightmost part of the spectrum of the linearized Navier}Stokes operator at the Hopf bifurcation
(Re"47)024), for the stationary structure.

TABLE 1

E!ect of the frequency ratio X
0

on the four leading eigenvalues j
1,2

, j
3,4

of the coupled system for
Re"47)024, c"0)01 and n"1/7000. The purely structural eigenvalues, given by equation (18), are
also reported for comparison. The stationary-structure von Karman eigenvalues, at the same

Reynolds number, are $0)368865 i

X
0

j
1,2

j
3,4

j
s

0)55 !5)398 10~5$0)368 i !4)077 10~3$0)204 i !5)0 10~3$0)204 i
1)00 3)640 10~4$0)367 i !4)597 10~3$0)369 i !5)0 10~3$0)368 i
1)80 1)732 10~5$0)368 i !4)555 10~3$0)663 i !5)0 10~3$0)663 i
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Figure 3. Real and imaginary parts of the von Karman mode at the Hopf bifurcation (Re"47)024) for the
stationary structure.

Figure 5. Real and imaginary parts of the disturbance vorticity "eld associated with the nearly-structural mode
for X

0
"0)55, c"0)01, n"1/7000 and Re"47)024.

Figure 6. Real and imaginary parts of the disturbance vorticity "eld associated with the nearly-structural mode for
X

0
"1)8, c"0)01, n"1/7000 and Re"47)024.



Figure 4. Shape of the vorticity modes on the symmetry axis with density ratio n"1/7000 and frequency ratio
X

0
"1: (a) real part of von Karman mode; (b) imaginary part of von Karman mode; (c) real part of the structural

mode; (d) imaginary part of the structural mode.
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In Figure 5 and 6 the vorticity "elds associated with the real and imaginary parts of the
&&nearly-structural'' modes are shown for the values X

0
"0)55 and 1)8. Since the Reynolds

number is constant, the mean advection velocity does not change; therefore, if the oscilla-
tion frequency is increased, it can be argued that the streamwise wavenumbers will also
increase. This is con"rmed by the analysis of the modes shown in Figures 5 and 6. In the
numerical simulation one has to be careful of this wavenumber change. For too large X

0
,

the wavelength can become too small for the resolution of the chosen grid. For low X
0
, the

wavelength can be too large compared to the numerical solution domain. In Figures 3,
5 and 6 it can also be observed that, as the structural frequency is increased, the disturbance
vorticity has a tendency to concentrate upstream. This mode deformation is similar to the
one observed as the Reynolds number is increased in stationary blu!-body wakes (Goujon-
Durand et al. 1994); indeed, in the post-critical behaviour following the "rst Hopf bifurca-
tion, the Strouhal frequency of the stationary cylinder wake increases with the Reynolds
number (Williamson 1996). Therefore, one can conjecture that the von Karman mode
deformation, observed when the Reynolds number is increased, in the classical stationary-
structure case, is basically due to the increasing intrinsic frequency of the oscillator: at
a given Reynolds number the deformed mode is thought to be similar to the one induced by
forced transverse oscillation at a frequency corresponding to the characteristic Strouhal
number at that Reynolds number.

5.2. INFLUENCE OF THE DENSITY RATIO

The results discussed in Section 5.1 were obtained with a very small density ratio
(n"1/7000) and in this case the structure and the #uid were almost uncoupled, i.e., the
spectrum of the coupled system was almost the &&sum'' of the spectra of the &&purely #uid''
(stationary-structure) system and the &&purely structural'' (no #uid) one. We now concentrate
on the e!ects of a change in the density ratio n. When n is increased, the aerodynamic forces
become of the same order of magnitude of the structural ones, and some changes are
expected in the spectrum.

We considered a frequency ratio X
0
"1)8 and a structural damping c"0)01. For these

parameters the &&purely structural'' eigenvalues, given by equation (18), are j
s
"!0)5]

10~3$0)663 i. Four sets of parameters were considered and the results are reported in
Table 2. In the "rst two tests ("rst two rows in the table), the Reynolds number was kept at
the stationary-structure critical value (Re"47)0244). In this case, an increase of the density
ratio n from 1/7000 to 1/700 did not substantially a!ect the spectrum as seen from Figure 7,
where the spectra of these two cases are reported. From the "rst two rows of Table 2, it is



Figure 7. Rightmost part of the spectra of the coupled aeroelastic system corresponding to the "rst two rows of
Table 2: two density ratios n"1/7000 and 1/700 are considered for Re"47)024, X

0
"1)8 and c"0)01.

TABLE 2

E!ect of the density ratio n on the four leading eigenvalues j
1,2

, j
3,4

of the coupled system for
X

0
"1)8 and c"0)01. In the two upper rows the Reynolds number is chosen at its critical value

in the stationary-cylinder case while in the third and fourth rows it is taken equal to half that
value. The purely structural eigenvalues j

s
, given by equation (18), are also reported for

comparison

n Re j
1,2

j
3,4

j
s

1/7000 47)024 1)732 10~5$0)368 i !4)555 10~3$0)663 i !5)0 10~3$0)663 i
1/700 47)024 1)705 10~4$0)368 i !5)277 10~4$0)663 i !5)0 10~3$0)663 i
1/70 23)512 3)803 10~2$0)660 i !4)385 10~2$0)302 i !5)0 10~3$0)663 i
1/7 23)512 6)855 10~1$0)097 i !4)360 10~2$0)304 i !5)0 10~3$0)663 i

192 C. COSSU AND L. MORINO
also seen that the von Karman eigenvalues remain the leading ones (j
1,2

). The nearly-
structural eigenvalues j

3,4
slightly shift to the right in the complex plane as n is increased

from 1/7000 to 1/700. Even if they are not strictly unstable they are almost critical and well
separated from the remaining stable part of the spectrum so that the corresponding
complex mode can also can be considered &&active''. In that case the system admits four real
degrees of freedom and chaotic behaviour is possible near the global bifurcation.

In the next two tests (third and fourth rows in Table 2) the Reynolds number was kept
"xed at half the critical stationary-structure value, i.e., Re"23)512. Two density ratios were
considered: n"1/70 and 1/7, which approximatively corresponds to steel in water. As seen
from Figure 8, where the spectra of these two cases are reported, for these sets of parameters
the von Karman mode is stable, while the former nearly-structural one is unstable. The
stable part of the spectrum does not seem to be a!ected by the change in n. The critical
Reynolds number, for n'1/70, is less than half the one for the stationary-structure case;
however, in that range only a (complex) mode is unstable and chaotic behaviour seems not



Figure 8. Rightmost part of the spectra of the coupled aeroelastic system corresponding to the third and fourth
rows in Table 2: two density ratios n"1/70 and 1/7 are considered for Re"23)512, X

0
"1)8 and c"0)01.
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possible near the bifurcation threshold. For n"1/70 this mode seems to be a nearly-
structural one because it has almost the same imaginary part. A further increase in n, from
1/70 to 1/7, leads to a strong increase of the growth rate of the unstable mode and to
a decrease of its oscillation frequency.

6. CONCLUSIONS

The "rst instability of a spring-mounted, damped rigid circular cylinder in a viscous #ow
has been numerically investigated without resorting to any semi-empirical modelling. An
integro-di!erential vorticity-only formulation has been adopted for the full Navier}Stokes
equations, used to model the #ow around the moving structure.

Two signi"cant modes are identi"ed: the &&nearly-structural'' one and the von Karman
one. The nearly-structural mode corresponds to eigenvalues which, in the limit of very small
#uid/solid density ratios n, tend to the characteristic (complex) frequency of the structure in
the absence of #uid. The von Karman mode corresponds to a pair of eigenvalues whose
frequencies are almost identical to the leading eigenvalues of the &&purely #uid'' system with
a stationary-structure near bifurcation. These two modes are well de"ned only for low
ratios of the #uid density to the structure density.

We "rst analysed the e!ect of a change in the frequency ratio X
0
, for a low density ratio

and a Reynolds number equal to the stationary-structure critical value. Both the nearly-
structural and the von Karman eigenvalues have been seen to be quite insensitive to the
aeroelastic coupling at the considered very small n"1/7000, i.e., for steel in air. When
X

0
"1 the nearly-structural complex mode almost coincides with the von Karman one

except for a phase shift. An increase of X
0
, with a constant Re, produces a deformation of

the nearly-structural mode which is similar to the one observed when the Reynolds number
is increased in the stationary-structure case.

The e!ect of a change in density ratio n was also considered for a "xed X
0
. An increase of

the density ratio n from 1/7000 to 1/700 did not substantially a!ect the spectrum. The von
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Karman mode remained the critical one, while the nearly-structural mode is almost critical
but not strictly unstable. For higher n the situation greatly changes. The critical Reynolds
number for n"1/70 is less than the half that of the stationary-structure case. A further
increase in n leads to a strong increase of the growth rate of the unstable mode and to
a decrease of its frequency. For n'1/70, for the sets of parameters considered, just
a complex mode is unstable and no chaotic behaviour seems possible near the bifurcation,
while for n(1/700 and low structural damping two complex modes are critical; in that case
the system admits four active real degrees of freedom and chaotic behaviour is possible near
the bifurcation (Guckenheimer & Holmes 1986). In future work, the e!ect of structural
damping and the weakly nonlinear interaction of the von Karman mode and the nearly-
structural one will be studied.
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APPENDIX: NOMENCLATURE

A linear part of the discretized Navier}Stokes operator
A

P
linearized discretized Navier}Stokes operator

b bilinear part of the discretized Navier}Stokes operator
c constant part of the discretized Navier}Stokes operator
c
L

lift coe$cient, ¸/(o
f
;2

=
/2)

D cylinder diameter, 2R
e
r

unit vector in the radial direction
eh unit vector in the azimuthal direction
G Green's function for the Laplacian operator
i imaginary unit, J!1
i unit vector parallel to the undisturbed #ow
j unit vector orthogonal to the undisturbed #ow in the plane of the #ow
k unit vector orthogonal to the plane of the #ow
n #uid/solid density ratio, o

f
/o

c
r radial coordinate
R cylinder radius
Re Reynolds number, ;

=
D/l

St Strouhal number, u/n
v
c

vertical velocity of the cylinder, yR
c

vr radial velocity component, e
r
' v

vh azimuthal velocity component, eh ' v
;
=

magnitude of the freestream velocity in the inertial reference frame
v velocity "eld in the #uid
v
=

velocity "eld of the undisturbed #ow
v
B

velocity of the structure
s state vector of the discretized system
s
P

perturbation from the steady state of the discretized system
s
S

steady-state solution of the discretized system
y
c

position of the cylinder centre in the inertial reference frame
c structural damping
!
=

global circulation
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!
E

circulation over the domain external to the computational domain
f vorticity "eld
h azimuthal coordinate
j eigenvalue of the linearized aeroelastic operator
j
1,2

leading eigenpair
j
3,4

second leading eigenpair (excepted j
1,2

)
j
s

structural eigenvalue in the absence of #uid
l kinematic viscosity of the #uid
o
c

density of the cylindrical structure
o
f

density of the #uid
t stream function
u

c
structural natural circular frequency

u
0

circular frequency of the von Karman mode at the bifurcation with a stationary-structure
X

0
frequency ratio, u

c
/u

0
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