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We study the effect of gravity on giant soap bubbles and show
that it becomes dominant above the critical size `= a2/e0, where
e0 is the mean thickness of the soap film and a =

√
γb/ρg is the

capillary length (γb stands for vapor–liquid surface tension, and ρ
stands for the liquid density). We first show experimentally that
large soap bubbles do not retain a spherical shape but flatten
when increasing their size. A theoretical model is then developed
to account for this effect, predicting the shape based on mechan-
ical equilibrium. In stark contrast to liquid drops, we show that
there is no mechanical limit of the height of giant bubble shapes.
In practice, the physicochemical constraints imposed by surfactant
molecules limit the access to this large asymptotic domain. How-
ever, by an exact analogy, it is shown how the giant bubble shapes
can be realized by large inflatable structures.
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Soap films and soap bubbles have had a long scientific history
since Robert Hooke (1) first called the attention of the Royal

Society and of Newton to optical phenomena (2). They have been
of assistance in the development of capillarity (3) and of minimal
surface problems (4). Bubbles have also served as efficient sen-
sors for detecting the magnetism of gases (5), as elegant 2D water
channels (6), and as analog “computers” in solving torsion prob-
lems in elasticity (7, 8), compressible problems in gas dynamics
(9), and even heat conduction problems (10). Finally, in the last
decades, the role of soap films and bubbles in the development of
surface science has been crucial (11–13), and the ongoing activity
in foams (14, 15) and in the influence of menisci on the shapes of
bubbles (16) are modern illustrations of their key role. The shape
of a soap bubble is classically obtained by minimizing the surface
energy for a given volume, hence resulting to a spherical shape.
However, the weight of the liquid contained in the soap film is
always neglected, and it is the purpose of this article to discuss
this effect.

For liquid drops, the transition from a spherical cap drop to
a puddle occurs when the gravitational energy, ρgR4 (R is the
typical size of the drop), becomes of the same order as its surface
energy γbR2. That is, for a drop size of the order of the capillary
length a =

√
γb/ρg (γb is the liquid–vapor surface tension, and

ρ is the liquid density). Typically, this transition is observed at
the millimetric scale: For a soap solution with γb = 30 mN/m,
a ' 1.7 mm. The two asymptotic regimes may be distinguished
through the behavior of the drop height h0 with volume: h0≈
R for small spherical drops, while the height of large puddles
saturates to a constant value h0≈ a .

If we look for the same transition in soap bubbles, we expect
the gravitational energy, ρgR3e0, to become of the order of the
surface energy, γbR2, at the typical size R≈ `, with `= a2/e0 (e0
stands for the mean thickness of the film). Thanks to the irides-
cence, the mean thickness can be estimated to a few microns or
less, and the light–heavy transition is thus expected at the met-
ric scale (instead of the millimetric one for drops): For γb =
30 mN/m and e0 = 1µm, `' 3.1 m.

The experimental setup dedicated to the study of such large
bubbles is presented in Experimental Setup, before information
on Experimental Results and Model. The discussion on the asymp-
totic shape and the analogy with inflated structures is presented
in Analogy with Inflatable Structures.

Experimental Setup
The soap solution is prepared by mixing two volumes of Dreft©

dishwashing liquid, two volumes of water, and one volume of
glycerol and was left aside for 10 h before experiments. The sur-
face tension of the different mixtures was measured using the
pendant drop method. It was found to be γb = 26± 1 mN/m.

The bubbles are formed in a round inflated swimming pool of
4 m diameter (Fig. 1), filled with 10 cm to 20 cm of soap solu-
tion. A large bubble wand was assembled with two wood sticks
and two cotton strings. The strings were immersed in the soap
solution. Two experimenters, located on opposite sides of the
pool, slowly opened the loop in air and pulled the sticks above
the water surface, before dipping the loop into the water to form
the bubble.

Once the bubble is at rest, the shape is analyzed by side view
images as shown in Fig. 1. In particular, we measure the diam-
eter, 2R, and the height, h0, of the giant bubble. The camera is
placed 4 m from the center of the pool, and the center of the lens
is at the same height as the center of the bubble, to minimize
parallax errors.

The film thickness e0 is important when studying the effect of
the bubble weight, as it determines the liquid mass. Following
McEntee and Mysels (17), the thickness of the bubble is mea-
sured via the bursting technique: A hole in a punctured soap film
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Fig. 1. Presentation of a “giant” soap bubble and definition of its radius,
R, and height, h0. (Here, R = 1.09 m, and h0 = 0.97 m.)

grows because of unbalanced surface tension forces at the edge
of the hole. The opening velocity v is constant and is given by the
Dupré–Taylor–Culick law (18–20),

v2 =
2γb
ρe0

= 2g`, [1]

where γb ' 26 mN/m, and ρ' 1,000 kg·m−3. Examples of thick-
ness measurements are presented in Fig. 2: In Fig. 2A and Fig.
2B, we present two sequences of four pictures showing the open-
ing of a hole in two soap bubbles of different sizes. We use such
sequences to extract the bursting velocity plotted as a function
of time in Fig. 2C. We observe that v is almost constant and
takes the value of 8 m/s for sequence in Fig. 2A and 2.8 m/s
for sequence in Fig. 2B. From the value of v , we deduce
e0' 0.81µm and `≈ 3.2 m for Fig. 2A and e0' 6.6µm and
`≈ 0.4 m for Fig. 2B, using Eq. 1. Although it may seem surpris-
ing to find that the film thickness is homogeneous, earlier studies
on the drainage of almost spherical liquid shells have shown that
the thickness approaches a profile with little spatial variations
(21, 22).

Experimental Results
Once ` is determined, we use it to rescale the experimental
shapes. An example of a nonspherical bubble is presented in
reduced scale in Fig. 3A. A systematic analysis of the effect of
gravity on the bubble shape is shown in Fig. 3B, where we plot
the reduced height h0/` as a function of the bubble reduced
radius R/` for all experiments. Fig. 3B reveals that the bub-

A
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C

Fig. 2. Bursting of bubbles used to determine the soap film thickness. (A) Image sequence of bursting bubbles, with a time step of 60 ms between images.
Red arrows indicate the boundary of the opening hole on each image. (Scale bar, 50 cm.) (B) Bursting sequence with a time step of 50 ms between images.
(Scale bar, 10 cm.) (C) The bursting velocity corresponding to A and B is plotted versus time.

bles’ shapes remain approximately spherical (h0/`=R/`, black
dashed line) only up to R/`≈ 0.3. For larger sizes, the bubble
height is significantly lower than that of a sphere. The largest
value of h0/` reached experimentally is ∼1.2, with correspond-
ing radius R/`= 1.6. Two points must be underlined at this stage:
(i) The experimental data in Fig. 3B show no sign of a height satu-
ration for increased bubble volumes, and (ii) despite our efforts,
we never managed to make bubbles larger than R = 1 m. Both
observations will be explained in Model.

Model
We now consider the mechanical equilibrium of the soap film
and predict how gravity affects the bubble shape. Bubbles are
axisymmetric, and we assume a uniform film thickness e0. The
bubble shape is described using the parametrization shown in
Fig. 4 A and B: The local height of the soap film is h(s), and
the local angle of the membrane relative to the horizontal is θ(s)
(defined as positive everywhere). The height and angle are func-
tions of the curvilinear coordinate s that measures the arclength
starting from the top of the bubble; ϕ is the azimuthal angle
around the vertical axis.

The equilibrium of an infinitesimal part of the membrane of
surface area rdsdϕ is first considered along the s direction. To
account for the experimentally observed slow draining and long
bubble lifetimes, the air–liquid interface must strongly moderate
the flow and behave as partially rigid, in contrast with the no-
stress behavior of surfactant-free interfaces. The main effect is
that gradients in surface tension γ(s), due to the presence of sur-
factants, have to balance viscous stresses applied by the flowing
liquid along the interface. In reaction, viscous stresses balance
the weight of the liquid in the film. Finally, the weight of liquid
is fully transmitted to the walls through viscous stresses and bal-
anced by surface tension gradients (15). The contribution due to
surface tension on each side of the infinitesimal element gives
a force 2γrdϕ, where γ is a function of position s . The weight
of the liquid inside the film is ρge0rdϕds sin θ, when projected
along the s direction. The balance of surface tension and weight
thus gives

2rdϕ [γ(s)− γ(s + ds)] = ρge0rdϕds sin θ, [2]

which, using dh/ds = − sin θ, yields

dγ =
1

2
ρge0dh ⇒ γ(s) = γb +

1

2
ρge0h(s). [3]

Here γb is the surface tension of the soap solution at the base
of the bubble (h = 0), and the surface tension is found to increase
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Fig. 3. (A) Example of flattened soap bubble of equatorial diameter 20 cm. The black dashed line is a circle, and the red solid line is the theoretical shape
obtained through the numerical integration of Eq. 6 that gives the same aspect ratio h0/R as the experiment. (B) Flattening of soap bubbles due to gravity,
quantified by the scaled height h0/` as a function of the scaled radius R/`, where `= a2/e0. Circles represent experimental data, the solid red line stands
for the model prediction, and the dashed black line represents the spherical limit h0 = R.

with height (23). For a bubble of thickness e0 = 1µm and height
1 m, the surface tension contrast between the base and top of the
bubble is typically 5 mN/m.

A closed equation for the bubble shape is obtained when next
considering the equilibrium normal to the membrane. The pres-
sure difference ∆P between the inside and outside of the bubble,
to balance the weight projected normal to the film ρge0 cos θ and
the Laplace pressure due to the two curved liquid–air interfaces.
The balance of pressure and weight reads

∆P = 2γ(s)

(
dθ

ds
+

sin θ

r

)
+ ρge0 cos θ, [4]

where dθ/ds is the curvature along s and sin θ/r is other princi-
pal curvature for an axisymmetric surface. We remind that γ(s)
is given by Eq. 3. As a final step, it is convenient to eliminate ∆P
by its value at the top of the bubble (s = 0, θ= 0, and h = h0),
where (dθ/ds + sin θ/r)|s→0→ 2dθ/ds|s=0 and γ(s = 0) = γb +
1/2ρge0h0. Combining ∆P (s = 0) with Eqs. 3 and 4 gives the
equation for the shape of the bubble,

(2γb + ρge0h)

(
dθ

ds
+

sin θ

r
− 2

dθ

ds

∣∣∣∣
s=0

)
− ρge0

(
1− cos θ + 2(h0 − h)

dθ

ds

∣∣∣∣
s=0

)
= 0. [5]

Scaling all lengths with `= a2/e0, denoting scaled variables by
a tilde, we obtain the shape equation in dimensionless form,(

2 + h̃
)(dθ

ds̃
+

sin θ

r̃
− 2

dθ

ds̃

∣∣∣∣
s̃=0

)
−
(

1− cos θ + 2(h̃0 − h̃)
dθ

ds̃

∣∣∣∣
s̃=0

)
= 0. [6]

A unique bubble shape is found numerically for each value of
the dimensionless height h̃0; this is done by adjusting the value
of dθ/ds̃(s̃ = 0) by a shooting algorithm to match the boundary
conditions (h̃ = h̃0 and θ= 0 at the top, with θ=π/2 at h̃ = 0 at
the bath).

Fig. 4C shows the corresponding bubble shapes for increas-
ing volume. As expected, small bubbles are dominated by sur-

face tension and are perfectly spherical. However, as bubbles get
larger (h̃0> 1), they show a tendency to flatten with respect to
the spherical shape. A direct comparison of the theoretical shape
with a real bubble is presented in Fig. 3A, where we superim-
pose the picture of a 20-cm diameter bubble with the solution
of Eq. 6 that has the same ratio h0/R. The two shapes cannot
be distinguished. The model (Eq. 6) also gives a quantitative
prediction for the height h̃0 = h0/` versus R̃ =R/` that can be
compared with the experimental data in Fig. 3B (solid line). The
result describes very well, without any adjustable parameter, the
experimentally observed flattening due to gravity.

Unexpectedly, the numerical solution does not predict a satu-
ration of the bubble height: h̃0 continues to increase in the limit
of large volume. This feature is highlighted in more detail in
Fig. 4E, showing the dimensionless bubble height on a log–log
plot. For large volumes, we find that h̃0≈ R̃2/3. This scaling law
implies a decaying aspect ratio, i.e., h̃/R̃� 1, but, at the same
time, there is no saturation of the bubble height. Interestingly,
these asymptotic features cannot be derived on simple dimen-
sional grounds. According to Eq. 3, both surface tension and
gravity scale with ρge0, which points to a scale invariance at large
bubble heights. Indeed, as is shown in Supporting Information, the
large bubble shapes in Fig. 4C exhibit scale invariance and can be
collapsed to a single, universal shape. The scaling of the univer-
sal shape near the edge reads h̃ ≈ (R̃ − r̃)

2/3
, as can be inferred

from the dominant balance h̃dθ/ds = (cos θ−1)' h ′
2
/2 in Eq. 6.

The 2/3 scaling at the edge determines the horizontal and verti-
cal scales for the bubble and leads to the scaling in Fig. 4E (see
Supporting Information for detailed analysis).

This scaling law for large bubbles, and, in particular, the lack
of saturation, is in stark contrast with the classical result for liq-
uid drops. The shape of droplets can be found from the classical
hydrostatic pressure balance (13) and is different from Eq. 6,

2

(
dθ

dŝ
+

sin θ

r̂
− 2

dθ

dŝ

∣∣∣∣
ŝ=0

)
− (ĥ0 − ĥ) = 0. [7]

Here, the lengths were made dimensionless using the cap-
illarity length a =

√
γb/ρg , and denoted by hatted variables.
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Fig. 4. (A) Sketch of a giant bubble of radius R and height h0. The local height is h. The gray area shows an infinitesimal surface element of the bubble.
(B) Zoom on the infinitesimal part of the bubble located at distance r from the symmetry axis of the bubble. The surface area of this surface element is
rdsdϕ; tan θ is the local slope of the soap film with respect to the horizontal. (C) Shapes of soap bubbles with dimensionless radius R/`= 0.3, 1, 5, and 10.
Although large bubbles tend to flatten (i.e., h0/R → 0), the height of giant bubbles shows no sign of saturation. (D) Shapes of liquid drops with contact
angle θ= 90◦ and dimensionless radius R/a = 0.3, 1, 5, and 10. The dimensionless height of large drops saturate to

√
2. (E) Experimental dimensionless

height of soap bubbles as a function of their dimensionless radius (circles). The theoretical dimensionless height h0/` of bubbles (full line) is plotted as a
function of their dimensionless radius R/`. Small bubbles (R/`< 0.3) are insensitive to gravity and remain hemispherical, thus minimizing their surface area
for the given volume. Giant bubbles flatten, but there is no saturation height as exists for drops larger than the capillary length: For large bubbles, one
finds h0≈ R2/3. The physical chemistry of surfactants, however, limits the range of accessible surface tension, setting the actual upper limit for the size of
giant bubbles (dashed line): hmax/`= 2∆γ/γb.

Fig. 4D shows the corresponding numerical solutions: Large
drops develop toward puddles, which, for θ=π/2, saturate to
the height ĥ0 =

√
2.

The height of soap bubbles may, however, be limited by phys-
ical chemistry of surfactants. The water that constitutes the bub-
ble is prevented from draining quickly by gradients in the sur-
face tension. The larger surface tension at the top of the bubble
supports the weight of water in the liquid shell (15). In prac-
tice, the surface tension of a soap solution cannot be higher
than that of pure water, γ∗; γ also has a minimum, γb , set by
the surfactant concentration of the solution used in the experi-
ments. Eq. 3 thus gives a criterion for the maximal height hmax of
the bubble,

γ∗ = γb +
1

2
ρge0hmax [8]

so that
hmax

`
=

2∆γ

γb
, [9]

where ∆γ= γ∗−γb is the highest achievable surface tension con-
trast between the top and bottom of a bubble; γ∗' 70 mN/m,
and γb may typically be as low as 20 mN/m, so that the expected

maximal height of a bubble of thickness e0 = 5 µm is of order
2 m, close to the size of the biggest bubbles we experimentally
produced (Fig. 1).

Fig. 5. Festo’s Airquarium, 31 m in diameter.
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Analogy with Inflatable Structures
Interestingly, the shapes we have just discussed correspond to
a minimization problem that is relevant in the context of large
inflatable structures, such as shown in Fig. 5. These structures
consist of a thin sheet that we assume cannot be stretched, and
which is inflated by a pressure difference ∆P . The mechan-
ical analysis on an infinitesimal element of the thin sheet is
strictly equivalent to that in Fig. 4 A and B: The role of sur-
face tension is replaced by the tension that develops inside
the membrane. It is interesting to confirm this analogy based
on energy minimization, with the no-stretch condition imposed
through a Lagrange multiplier λ. Characterizing the axisymmet-
ric shape as h(r), and thus h ′= dh/dr , the functional F [h] to be
minimized reads

F [h] =

∫
dr2πrL(h, h ′), [10]

with

L(h, h ′) = ρge0h(1 + h ′
2
)
1/2

+ λ(1 + h ′
2
)
1/2
−∆P h. [11]

The three terms respectively represent the gravitational free
energy, the area constraint, and the work done by the pres-
sure difference. The Euler–Lagrange equation for this functional
gives (see Inflatable Structures):

∆P = (λ+ ρge0h)

(
dθ

ds
+

sin θ

r

)
+ ρge0 cos θ, [12]

which is, indeed, strictly identical to the equation that dictates the
bubble shapes (Eq. 4). Designing the inflatable structures along
these optimal shapes will naturally avoid stretching and compres-
sion of various parts of the sheets, avoiding wrinkles and reduc-
ing tensile stresses exerted in the sheets and on the seams that
connect the various parts. This design should help increase the
lifetime of such structures.

Conclusion
We study the shape of large soap bubbles and show that gravity
becomes important at the scale `= a2/e0. We derive the equa-
tion for the shape and show that gravity matters in two distinct
terms: the expected hydrostatic term and the evolution of sur-
face tension via Marangoni stresses. A direct consequence is that
there is a physicochemical limit to the size of soap bubbles, hmax .
Finally, we point out that, contrary to drops, the shape of giant
soap bubbles is not characterized by a saturation of the height
but by a self-similar behavior in which h0/`≈ (R/`)2/3.
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