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How does a human lift a weight? Can we relate the
dynamics of the lift to the molecular actin–myosin
interactions responsible for muscle contraction? We
address these questions with bench press experiments
that we analyse with a theoretical model, based on the
sliding filament theory. The agreement is fair, and we
discuss its possible extension to medical diagnostics.

1. Introduction
The motion of vertebrates results from a coupling
between bones-joints and muscles. Even if its study goes
back to Aristotle’s De motu animalium [1], the first
quantitative analysis was produced in 1675 by Giovanni
Borelli [2] (figure 1). A review on biomechanics can be
found in [3,4]. At this macroscopic scale, the muscle
is often characterized by the heuristic Hill’s law [5–7]
and modelled as an active viscoelastic structure, able
to produce a force, to store a tension and to dissipate
energy [8].

The precise mechanism of force generation has been
itself a long scientific quest since antiquity and the work
of Hippocrates of Cos [9,10]. One way to measure the
difficulties associated with the understanding of the force
generation mechanism consists of comparing the scale
at which the force is used (typically the body scale,
1 m) to the scale at which the force is generated which
is a topological conformation change of the myosin
molecule by 10 nm [11]). Eight orders of magnitude
thus separate the molecular origin of the force from its
macroscopic function, namely the motion of organisms.
Considering the scales involved, this quest has been
subjected to the development of techniques from the
early microscope (the sarcomere is visualized for the first
time in 1674 by van Leeuwenhoek [10]) to the electron
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...................................................Figure 1. Biomechanical study of holding mass by Borelli in 1675 [2].
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Figure 2. (a) General principle of bench press exercise. (b) Table of morphological characteristics of athletes performing BP
experiments: height (H), body mass (M0), arm length (L), arm section (S), the lightest (Mmin) and the maximal (M�) masses
they lift during experiments. (Online version in colour.)

microscope [12]. The sliding filament model came out of this quest. According to Needham [9], the
first hints of the sliding-filament mechanism of contraction were given by the low-angle X-ray diffraction
patterns obtained by H.E. Huxley with living and glycerol-extracted muscle in 1953 [13]. A theory for
the contraction based on this sliding-filament model was then proposed by A. F. Huxley in 1957
[14] and further completed in 1968 by Deshcherevskii [15]. The connection between the force
generated and the precise molecular machinery is still an active field of research [16–18].

The goal of this article is to show how the sliding filament model can be coupled to a classical
mechanical joint equation to account for motions observed in weightlifting. The experimental set-
up is presented in §2, and the results in §3 prior to the model in §4 and the discussion on its
possible extension to medical diagnostics in §5.

2. Experimental set-up
In order to minimize the number of joints involved in the motion, we have worked with the
bench press configuration presented in figure 2a. This is an upper body exercise where the athlete
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Figure 3. Snapshot sequences of the single lifts performed by Gregory at bench press for barbellsM= 20 kg (upper sequence)
andM= 140 kg (lower sequence). (Online version in colour.)

lies on his back, lowers the barbell to chest level and then pushes it back up until the arms
are straight.

The morphological characteristics of the athletes are gathered in the table of figure 2b. H is
their height and M0 is their mass. The length of their arm, from shoulder to elbow is L and S is
the section of the biceps. Finally, Mmin is the lighter mass they raised while M∗ is their record lift.

3. Experimental results
The athletes are asked to lift the weight once at maximal speed. They perform this explosive task
for different masses of barbell from the lightest mass Mmin to the maximal mass they are able to
lift M∗. Between each lift, a resting period of several minutes is respected.

(a) Qualitative results
The two snapshot sequences of figure 3 present qualitatively the dynamics of the lift. The athlete
lifts the barbell from z = 0 (bent arms) to z = 2L (straight arms) in a time TL. In the upper sequence,
the athlete takes 0.4 s to raise a mass of 20 kg. In the lower sequence, it takes him 0.9 s to raise a
140 kg barbell.

(b) Quantitative results
The precise dynamics of the barbell is recorded with an accelerometer Myotest acquiring at 500 Hz
which provides velocity and acceleration. Its vertical location is measured using a video camera
at 30 fps.

Figure 4 shows the evolution of the vertical position of the barbell zM(t) and its velocity żM(t)
with time, for different masses of the barbell from Mmin to a fraction of M∗, and for two different
athletes with different morphologies: Michael (M0 = 71 kg, M∗ = 105 kg) in figure 4a–c and
Gregory
(M0 = 114 kg, M∗ = 230 kg) in figure 4b–d.

With no surprise, one observes that the dynamics of the barbell is slower for heavier barbells.
The position curves show that the height travelled by the barbell decreases a bit when its mass
increases. This is due to the holding location of the hands along the bar. The heavier the mass, the
larger the distance between the hands and the lower the final height of the barbell.

Concerning the velocities, the barbell is initially at rest and recovers this state at the end
of the lift. The initial and final velocities żM(t = 0) and żM(t = TL) are thus null, and one
expects a maximum value in between. This is indeed the general shape observed in figure 4c–d.
A further feature is the deformation of the velocity curves when the load increases. For light
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Figure 4. Barbell dynamics: vertical position zM(t) and velocity żM(t) for different masses of the barbell fromMmin andM∗ and
for Michael (M0 = 71 kg,M∗ = 105 kg) on the left (a,c), and Gregory (M0 = 114 kg,M∗ = 230 kg) on the right (b,d). (Online
version in colour.)

barbell, the velocity signal is rather symmetric, whereas for heavier barbell, a second bump
systematically appears.

The dynamics of the barbell is presented for two athletes with different morphologies: one
observes that the general trends are similar, but a careful analysis of the curves reveals some
differences, particularly in the shape of the velocity curves. For heavy weights, the velocity
profiles of Michael are rather ‘triangular’, whereas those of Gregory are more ‘rectangular’.

Another interesting feature of all these signals is the initial rising phase. The time evolution of
the height is shown on a log–log scale in figure 5 for Michael (a) and Gregory (b) and different
mass. In all the cases, this presentation reveals that the height initially increases as the third power
of time: zM ∼ t3, which implies that the velocity is initially quadratic in time.

4. Model

(a) Joint equation
We model the weightlifter by a single joint as presented in figure 6. The elbow of radius r and
mass Ma is connected to two massless bones of identical length L. The shoulder is motionless
and defines the origin z = 0. During a single lift, the weightlifter extends his arms by contracting
his muscles (red). The barbell goes from zM = 0, with arms bent (ψ = π/2) to the vertical position
zM = 2L (ψ = 0). During the motion, the barbell is in the weightlifter’s hands at the location zM =
2L cosψ . The muscles are contracting at a velocity v = −rθ̇ = −rψ̇ and generate the force F which
enables the lift.
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Figure 5. Time evolution of the barbell height in the initial rising phase for Michael (a) and Gregory (b) and for different mass.
(Online version in colour.)
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Figure 6. Scheme of the elbow joint and associated forces: the arm bones (length L) are linked by the joint (radius r) andmake
an angleψ with the vertical line. The muscle drawn in red, enables to extend the arm and lift the weightM. (Online version in
colour.)

To derive the equation of motion ψ(t), we first apply Newton’s equation in zM. Along the
vertical direction z, this equation writes Mz̈M = C1 cosψ − F cos θ − Mg, where C1 is the force
exerted by the bone on the mass. This equation gives an expression for C1

C1 cosψ = M(z̈M + g) + F cos θ . (4.1)

At the elbow, B, the equation of motion along the direction x takes the form: MaẍB = 2F sin θ −
C2 sinψ − C1 sinψ . In this equation, C2 stands for the force exerted by the lower bone on the
joint, the expression of which can be deduced

C2 sinψ = −C1 sinψ + 2F sin θ − MaẍB. (4.2)
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Finally, along the vertical direction, the equation of motion of the joint writes: Maz̈B =
(C2 − C1) cosψ − Mag. Using equation (4.1) for C1 and equation (4.2) for C2, we get

(Ma + 4M sin2 ψ)Lψ̈ + 4ML sinψ cosψψ̇2 = (Ma + 2M)g sinψ − 2F sinα. (4.3)

To derive this equation, we have used the geometrical relations ẍB = −L cosψψ̈ + L sinψψ̇2, z̈B =
−L sinψψ̈ − L cosψψ̇2 and z̈M = −2L sinψψ̈ − 2L cosψψ̇2.

Using T =√
L/g as the characteristic time, equation (4.3) can be rewritten under the

dimensionless form(
1 + 4

M
Ma

sin2 ψ

)
¯̈ψ + 4

M
Ma

sinψ cosψ ¯̇ψ2 =
(

1 + 2
M
Ma

)
sinψ − 2F sinα

Mag
. (4.4)

Equation (4.4) must be solved with the initial conditions:ψ(0) = π/2 and ¯̇ψ(0) = 0. For the mass
to rise, the force must be large enough to get ¯̈ψ < 0. This condition implies that if F0 is the maximal
force that the athlete can develop, the maximal mass that he can lift is

M� = F0

g
r
L

− Ma

2
. (4.5)

For a given force and athlete mass, M� is maximized by short segments and large articulations.
Elongated and thin bodies are thus disadvantaged in weightlifting.

(b) Force relation
At this point, it must be underlined that the differential equation (4.4) can be integrated only if
the force F is known. Determining this closure relation is the purpose of this section. Using F0, the
closure term can be written as

2F sinα
Mag

= F
F0

(
1 + 2

M�

Ma

)
= F̄

(
1 + 2

M�

Ma

)
, (4.6)

where F̄ = F/F0 is the reduced force. The mass of the lifting ‘machine’ Ma can be evaluated using
classical physiological studies as the sum Ma = Marm + Mforearm where the mass of the two arms
is Marm = 0.08 × M0 − 1.31 and the mass of the two forearms is Mforearm = 0.04 × M0 − 0.23 [19].
For Gregory, we find Ma = 12.1 kg and deduce M�/Ma = 19. For Michael, we find Ma = 7 kg and
deduce M�/Ma = 15.

(i) Constant force: F̄ = 1

We first naively consider the muscle as an ideal force generator, producing always the maximal
force F = F0, whatever the load or the velocity of contraction. We then integrate numerically
equation (4.4) with M�/Ma = 15 and present the dynamics of weightlifting in figure 7. Figure 7
shows the results obtained for the mass height (a) and mass velocity (b) for different masses of the
barbell ranging from M/M� = 0.1 to M/M� = 0.9.

Several features differ from the experimental observations presented in figure 4: the initial
rise of the velocity is linear here, whereas it seems quadratic experimentally. At low masses,
the experimental velocity is almost symmetric, whereas it is always dissymmetric in the
numeric. Finally, no secondary peak appears at large mass in the numeric. We conclude that the
experimental results cannot be approached with a constant force model. A deeper understanding
of muscle contraction must be introduced in order to improve our model.

(ii) Presentation of the sliding filament model

A scheme of the contractile machinery is presented in figure 8a: muscle cells extend from
one tendon to another, which connect to bones. The muscle cell is composed of nuclei and
of myofibrils, a linear assembly of sarcomeres, the elementary contractile unit. A sarcomere
itself is made of thin actin filaments connected to thick myosin filaments via myosin heads
(figure 8b(i)(ii)). When a neuron stimulates a muscle cell, an action potential sweeps over the
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plasma membrane of the muscle cell. The action potential releases internal stores of calcium that
flows through the muscle cell. Actin and myosin filaments are juxtaposed but cannot interact in
the absence of calcium (relaxed state b(i)). With calcium, the myosin-binding site is open on the
actin filaments, which allows the myosin motors to crawl along the actin, resulting in a contraction
of the muscle fibre b(ii) [12,21].

A theory for the contraction based on this sliding-filament model was then proposed by
Huxley in 1957 [14] and further completed in 1968 by Deshcherevskii [15]. We present the main
steps of this later model and then establish the connection with weightlifting.

Deshcherevskii considers three main states in the actomyosin cycle (figure 8c): a myosin head
is either ‘free (A), or developing an active force (B) or detaching (with a breaking force) (C). Each
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myosin head within a sarcomere moves from one state to the other following the sequence A–B–
C–A–B–C–. . . . Denoting n and m as the number of myosin heads in the states (B) and (C) and αD

the total number of myosin heads in half a sarcomere, Deshcherevskii expresses the rate of change
of both populations via two kinetic equations

dn
dt

= αD − (n + m)
τ1

− vs

�
n (4.7)

and
dm
dt

= vs

�
n − m

τ2
, (4.8)

where τ1 is the characteristic time of the transition from state A to B and τ2 is the characteristic
opening time of bridges which leads to a transition from C to A; � is the mean value of
conformational transformation of the myosin head during the power stroke (�≈ 10 nm). If vs is
the relative velocity between the actin and myosin filaments, �/vs represents the time after which
one active head switches from stretched (active) to compressed (resisting). In the isometric limit
where there is no net contraction of the sarcomere, the characteristic time of the transition B–C
reduces to the characteristic time τnm of the topological switch of the myosin molecule. One could
thus write the velocity vs = vt + vi as the sum of a translation velocity vt and intrinsic velocity
vi = �/τnm. This later term becomes dominant only in the isometric limit. Because we focus here
on the dynamic, this term is going to be neglected in the following discussion where we assume
vs ≈ vt.

Assuming that the active and braking force developed by the myosin head are identical and
equal to f 1, the force developed by a sarcomere is equal to

Fs = f (n − m). (4.9)

To extend this result to the whole muscle, we first evaluate the number of sarcomeres aligned in
series, Ns. If L ≈ 0.3 m is the length of the muscle and �s ≈ 3 µm the length of a sarcomere, then
one gets Ns ≈ 105. This number connects the sliding velocity vs and the contraction velocity v via
the relation: v = Ns.vs. From Wilkie [6], we get that, in humans, the contraction velocity is in the
range v ≈ 1–10 m s−1. This implies that the sliding velocity in the sarcomere is in the range vs ≈
10–100 µm s−1. The next step consists of evaluating the number of sarcomeres placed in parallel in
a muscle, Np. If S (S ≈ π (0.1)2/4 ≈ 10−2 m2) stands for the cross section of the muscle and Ss (Ss ≈
π (0.5 × 10−6)2/4 ≈ 2.5 × 10−13 m2) for the cross section of a sarcomere, one gets Np ≈ 4 × 1010.
The total force of the muscle F is then related to the force developed by a single sarcomere Fs

via the relation: F = Np.Fs. Because F ≈ 500 N, one deduces the number of simultaneously active
myosin heads DC.αD ≈ F/f .Np ≈ 3000. In this expression, DC is the fraction of active to the total
number of myosin heads which can be evaluated as the duty factor which is of the order of 0.2
[26,27]. Which leads to αD ≈ 15 000. This global evaluation can be compared with a direct counting
of the number of myosin heads: using the work of Huxley [28], one evaluates eight myosin heads
every 43 nm of myosin filament. Because the distance between the thick myosin filament is 50 nm,
we deduce that in a sarcomere (500 nm in diameter), the total number of heads is αD ≈ (500/50)2 ×
(1000/43) × 8 ≈ 18 400. Both evaluations are compatible.

(iii) The steady limit and Hill’s equation

In the steady regime where vs is a constant, the populations of the three stages A,B,C remain
constant on average, and one deduces τ1 vs n/�= αD − (n + m) and τ2 vs n/�= m.

These equations enable us to get the force–velocity relationship

F = F0
1 − v/vmax

1 + (F0/a).v/vmax
with F0 = Np.αD.f ,

F0

a
= 1 + τ1

τ2
and vmax = Ns.�

τ2
. (4.10)

1f has been measured by several groups, and it is found to be of the order of 3 pN [22–25].
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and with the initial conditions:ψ (0)= π/2 and ψ̇ (0)= 0. (Online version in colour.)

This hyperbolic relation between the force and the velocity was first proposed heuristically by
Hill in 1938 [5]. Here, it appears as the quasi-steady limit of the Deshcherevskii’s kinetic model.
Using the previous estimates, we get τ2 = Ns�/vmax ≈ 105 × 10−8/1 ≈ 1 ms. What is important to
note at this stage is the fact that the maximal velocity of relative motion in the sarcomere is �/τ2.
The velocity �/τnm is thus lower, and we deduce τnm > τ2. Moreover, from Wilkie [6], we find
F0/a ≈ 5 in humans which implies τ1 ≈ 4 τ2. These orders of magnitude are compatible with those
proposed by Deshcherevskii [29], who evaluate τ1 ≈ 3 − 6 τ2 and τ2 ≈ 6 ms.

Because the contraction velocity v is linked to the angle of the joint ψ through the relation
v = −rψ̇ , equation (4.10) can be rewritten in the form

F̄ = 1 + G ¯̇ψ
1 − G ¯̇ψ(1 + τ1/τ2)

, where G = r
vmax

√
g
L

. (4.11)

In the limit G � 1, this expression of the force reduces to the constant limit F̄ = 1 which has been
discussed in §4b(i). The numerical integration of the system (4.4) and (4.11) with G = 0.3 and
τ1/τ2 = 3 is shown in figure 9 for both the height (a) and the rising velocity (b).

Even if the numerical integrations seem to get closer to the experiments, the initial phase is
much too quick and exhibits a behaviour z̄M ∼ t̄2 which is not observed experimentally. We thus
now consider the non-steady limit of the full Deshcherevskii’s model.

(iv) The unsteady limit of Descherevskii’s model

In a non-dimensional form, the kinetic model of Deshcherevskii (4.7), (4.8) and (4.9) takes the
form

dn̄
dt̄

= (1 − m̄ − n̄)
τ̄1

− ṽn̄
τ̄2

(4.12)

dm̄
dt̄

= ṽn̄
τ̄2

− m̄
τ̄2

(4.13)

and F̄ = n̄ − m̄. (4.14)
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Figure 10. Evolution of the fraction of active myosin heads n̄ (a), to be detached myosin heads m̄ (b) and muscle force F̄ (c).
These evolutions result from the numerical integration of equations (4.4) and (4.16), (4.15) and (4.14) for differentmasses of the
barbell andwith the initial conditions:ψ (0)= π/2 and ψ̇ (0)= 0, G = 0.3, τ̄2 = 0.25 and τ̄1 = 3τ̄2,M�/Ma = 15. (Online
version in colour.)

In these expressions, t̄ = t
√

g/L, n̄ = n/αD, m̄ = m/αD, τ̄1 = τ1
√

g/L, τ̄2 = τ2
√

g/L, ṽ = v/vmax =
−G ¯̇ψ and F̄ = F/F0. Equation (4.12) provides the expression m̄(n̄, ˙̄n):

m̄ = 1 −
(

1 − τ̄1

τ̄2G ¯̇ψ

)
n̄ − τ̄1 ˙̄n, (4.15)

which can be differentiated with respect to time and injected in equation (4.13) to get the
differential equation for n̄:

τ̄1τ̄2 ¨̄n + (τ̄1 + τ̄2 − τ̄1G ¯̇ψ) ˙̄n +
[

1 −
(

1 + τ̄1

τ̄2

)
G ¯̇ψ − τ̄1G ¯̈ψ

]
n̄ = 1. (4.16)

Equation (4.16) must be solved with initial conditions that are going to be discussed below.
Once integrated, one gets the time evolution of n̄ and deduces via equation (4.15) the value
of m̄. Both expressions provide the evaluation of the force F̄ = n̄ − m̄ which can then be used
as a closure in equation (4.4), because 2F sinα/Mag = F̄(1 + 2M�/Ma). In the quasi-steady limit
(τ̄1 → 0, τ̄2 → 0, τ̄1/τ̄2 finite), equation (4.16) reduces to n̄ = 1/[1 − (1 + τ̄1/τ̄2)G ¯̇ψ] from which
m̄ = 1 − (1 − τ̄1/τ̄2G ¯̇ψ)n̄. These relations together with F̄ = n̄ − m̄ allow to recover Hill’s relation
F̄ = (1 + G ¯̇ψ)/[1 − (1 + τ̄1/τ̄2)G ¯̇ψ].

We now discuss the initial conditions used to integrate equation (4.16). Initially, the athlete
holds the weight in the position ψ = π/2. The weight neither falls nor rises ( ¯̇ψ = 0). From
equation (4.4), we deduce F̄ = (1 + 2M/Ma)/(1 + 2M�/Ma) and ¯̈ψ = 0. According to the model of
Deshcherevskii presented in figure 8c and described by equations (4.7)–(4.9), the population m is
fed by the population n which has produced the force f during the time �/vs and is depleted over
the characteristic time τ2. In other words, if all the active myosin heads (state B) are initially active,
then the population m reduces to 0. This is the condition with which we start our calculation:
m̄ = 0 and thus n̄ = F̄ (equation (4.14)). It follows from equation (4.15) that ˙̄n = (1 − n̄)/τ̄1. This
condition, together with n̄ = F̄ provides the two initial conditions needed to integrate the second-
order ordinary differential equation (4.16). Apart from the ratio M�/Ma which has already been
discussed in §4b, we take the values of Deshcherevskii: τ2 = 6 ms (τ̄2 = 0.04) and τ1 = 6τ2. The
only parameter is G, and we chose it constant for a given athlete in order to approach the velocity
signal at all mass.

An example of numerical integration of equations (4.16), (4.15) and (4.14) with the parameters
G = 0.17, τ̄2 = 0.04 and τ̄1 = 6τ̄2 is presented in figure 10. The evolution of the fraction of active
myosin heads n̄ is strongly nonlinear and leads to a nonlinear evolution of the muscle force F̄.
The corresponding evolution of the barbell height zM/2L and barbell speed żM/

√
4gL are obtained

with the associated integration of equation (4.4) and presented in figure 11.
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Figure 11. Evolution of the dimensionless height zM/2L (a) and of the dimensionless vertical velocity żM(t)/
√
2gL (c) as a

function of the reduced time t
√
g/2L obtained by integrations of equation (4.4) and (4.16), (4.15) and (4.14) for differentmasses

of the barbell and with the initial conditions:ψ (0)= π/2 and ψ̇ (0)= 0, G = 0.17, τ̄2 = 0.04 and τ̄1 = 6τ̄2,M�/Ma = 15.
For comparison, the reduced experimental results for Michael are shown in (b). (Online version in colour.)
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Figure 12. Evolution of the dimensionless height zM/2L (a) and of the dimensionless vertical velocity żM(t)/
√
2gL (c) as a

function of the reduced time t
√
g/2L obtained by integrations of equation (4.4) and (4.16), (4.15) and (4.14) for differentmasses

of the barbell andwith the initial conditions:ψ (0)= π/2 and ψ̇ (0)= 0, G = 0.33, τ̄2 = 0.04 and τ̄1 = 6τ̄2,M�/Ma = 19.
For comparison, the reduced experimental results for Greg are shown in (b). (Online version in colour.)

We first observe in figure 11a that the barbell height increases as t3 as shown experimentally in
figure 5. Concerning the velocity, the non-dimensionalized experimental results associated with
Michael (figure 4) are presented in figure 11b and can be compared with the numerical results
presented in figure 11c. For the same range of lifted masses M/M�, the rising time is similar,
and the range of velocity seems to differ by a factor 1.3. The main difference between the two
sets of curves seems to be in the final fall of the velocity which is systematically sharper in the
numerics than in the experiments. This effect is probably due to the fact that both hand and
shoulder positions are assumed to be fixed in the numerics while they slightly change in the
experiments.

Using the characteristics of the other athlete Greg (M�/Ma = 19) and similar values of the
muscle properties (G = 0.33, τ̄2 = 0.04 and τ̄1 = 6τ̄2), we present in figure 12 the comparison
between the reduced experimental results (b) and the numerical integration of the joint–muscle
system (equations (4.4), (4.16), (4.15) and (4.14)). Again, the initial rise is cubic in time and the
numerical signal evolves towards a more rectangular shape, as does the experimental one. The
characteristic time for the rise are similar, whereas the absolute value of the velocity still differs
by a factor 1.4.
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5. Discussion and medical perspectives
We have just shown that the microscopic understanding of muscle contraction is essential to
account for the motions observed in weightlifting. The model we propose to describe bench
press lifting is, indeed, composed of two different parts, one for the articulation (equation (4.4))
and one for the force generation (equations (4.12)–(4.14)). This model involves three different
constants, two for the ratio between the biochemical kinetics and the macroscopic timescale (τ̄1, τ̄2)
and one to compare the characteristic time of muscle contraction with the characteristic time of
the macroscopic motion (G). Up to now, the first two constants have been fixed to the values
estimated in Deshcherevskii’s studies. Only G was slightly changed in the simulations presented
in figures 11 and 12 from 0.17 to 0.33. If one explores numerically, then the whole phase diagram
(G, τ̄1/τ̄2) different behaviours appear as shown in figure 13. For low values of τ̄1/τ̄2, the increase
of G leads to the transition already observed from a triangular behaviour of the velocity in time to
a rectangular one. At larger values of τ̄1/τ̄2, oscillations occur either over the whole lift (small G),
or concentrated in the first phase of the rise (large G). This suggests that bench press experiments
could be used as a muscle rheometer to probe characteristic times of muscle contraction or to
identify muscle pathologies.

To check these ideas, Loïc Auvray has agreed to work with us and performed the same bench
press experiments as the other athletes. Loïc developed, eight months ago, an amyotrophic lateral
sclerosis. This muscle pathology is a rapidly progressive neurological disease that attacks the
nerve cells (neurons) responsible for controlling voluntary muscles. The experimental results
obtained with Loïc are presented in figure 13b. There, the velocity oscillations are clearly visible
and contrast with the smooth evolutions observed in figure 4.

These different behaviours suggest that the analysis of bench press lifts can indeed be used as a
muscle rheometer, able to distinguish regular behaviours from pathological ones. This perspective
of using bench press lifts as a diagnostic tool is a very promising and stimulating perspective of
this work.
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