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The contraction of a muscle generates a force that decreases when
increasing the contraction velocity. This “hyperbolic” force–velocity
relationship has been known since the seminal work of A. V. Hill in
1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136–195].
Hill’s heuristic equation is still used, and the sliding-filament
theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173
(4412):973–976; Huxley AF, Niedergerke R (1954) Nature 173
(4412):971–973] suggested how its different parameters can be
related to the molecular origin of the force generator [Huxley
AF (1957) Prog Biophys Biophys Chem 7:255–318; Deshcherevskiı̆
VI (1968) Biofizika 13(5):928–935]. Here, we develop a capillary
analog of the sarcomere obeying Hill’s equation and discuss its
analogy with muscles.

muscle contraction | capillary analog | force–velocity relation |
sliding filament | actomyosin cycle

From 1487 to 1516, Leonardo da Vinci planned to write a
treatise on human anatomy. The book never appeared, but

many drawings and writings have been conserved, mainly at the
royal collection at Windsor (1):

After a demonstration of all of the parts of the limbs of man and
other animals you will represent the proper method of action of
these limbs, that is, in rising after lying down, in moving, running and
jumping in various attitudes, in lifting and carrying heavy weights, in
throwing things to a distance and in swimming and in every act you
will show which limbs and which muscles are the causes of the said
actions and especially in the play of the arms. (2, 3)

Apart from Leonardo’s attempts, the understanding of muscle
contraction has been a long quest since antiquity and the work of
Hippocrates of Cos (4). The topological structure of muscles was
described in the anatomical studies by Andreas Vesalius in 1543
(5) and the static force generated was quantified in the first
biomechanics treatise of Giovanni Borelli in 1680 (Fig. 1A) (6).
One realizes the difficulties associated with the understanding of
the force generation mechanism by comparing the scale at which
the force is used (typically the body scale: 1 m) to the scale at
which the force is generated [contraction of the myosin mole-
cule: 10  nm (7)]. Eight orders of magnitude separate the mo-
lecular origin of the force from its macroscopic function, namely
the motion of organisms. Considering the scales involved, re-
search on muscles has progressed with the development of new
techniques, from early microscopy for the micrometer-scale
sarcomere (8), to X-ray diffraction (9) and interference micros-
copy (10) for the actin–myosin sliding structure, and optical
tweezers for the study of individual myosin molecules (7).
Despite the complexity of the muscular system, the relation

between the force F needed to move a given load and the ve-
locity v of the motion is accessible via macroscopic experiments
such as the one from Wilkie sketched in Fig. 1B (11). Here, a
constant force F =Mg is imposed by the weight E, and one
records the maximal speed of contraction, vðFÞ. Decoupling in-
ertial effects from muscle properties, one gets human muscle
characteristics as shown in Fig. 1C. The force reaches its maxi-
mum F0 at v= 0, and it vanishes at a maximal speed v= vmax. The
evolution between these two limits is captured by an equation

proposed by Hill in 1938 (12), ðF + aÞðv+ bÞ= ðF0 + aÞb, which
can be written under the hyperbolic form:

F
F0

=
1− v=vmax

1+ ðF0=aÞ v=vmax
. [1]

This equation is drawn with a solid line in Fig. 1C for two sub-
jects (D.W. and L.M. in ref. 11), using the values F0 = 196 N,
vmax = bF0=a= 7.5 m=s, and F0=a= 5 for D.W., and F0 = 200 N,
vmax = 7.0 m=s, and F0=a= 2.1 for L.M. The isometric tension F0
defines the force against which the muscle neither shortens nor
lengthens, and vmax is the maximal speed reached without load
(F = 0). These results illustrate the accuracy of Hill’s equation and
the variability of the parameter F0=a between different subjects.
Apart from skeletal human muscles, Hill’s equation (Eq. 1) is found
to apply to almost all muscle types and over various species (13).
The contractile muscular machinery is made of parallel muscle

cells that extend from one tendon to another, which connect to
bones. A muscle cell is composed of nuclei and myofibrils, a
linear assembly of sarcomeres, the elementary contractile unit.
The typical size of sarcomeres is 3 μm, so that their number in
myofibril of a 30-cm muscle cell is on the order of 105. A sar-
comere itself is made of thin actin filaments connected to thick
myosin filaments via myosin heads (Fig. 2 C1 and C2). When a
neuron stimulates a muscle cell, an action potential sweeps over
the plasma membrane of the muscle cell. The action potential
releases internal stores of calcium that flow through the muscle
cell and trigger a contraction (C2). Actin and myosin filaments
are juxtaposed but cannot interact in the absence of calcium
(relaxed-state C1). With calcium, the myosin-binding sites are
open on the actin filaments, and ATP makes the myosin motors
crawl along the actin, resulting in a contraction of the muscle
fiber (C2) (14, 15). The interaction energy increases with the
number of cross-bridges, namely with the surface between actin
and myosin threads.
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Hill’s equation is a heuristic law and its connection to the sliding-
filament model has first been established via adjustable corre-
lations (16) and later via strong theoretical assumptions (17).
The purpose of the present article is to build a capillary analog of
the sliding-filament model, to record the corresponding force–
velocity relationship, and to show how this minimal model sys-
tem leads to Hill’s equation.

Capillary Muscle: Setup and Results
Our device is sketched in Fig. 2 A and B. A cylindrical glass
tube (length, L= 10  cm; diameter, 2R= 5 mm) filled with a
Newtonian silicone oil (density, ρ= 950  kg=m3; viscosity, η =
0.1–1 Pa·s; surface tension, γ = 0.022 N=m) lies on polystyrene
floating on a water bath, a setup chosen to minimize friction.
Once in contact with a rigid fixed steel wire (diameter, 2r=
1.8 mm), the glass tube moves to encompass and wet the wire.
Because the glass tube is equipped with a trailing hook, it
entrains at t= 0 and x=−x0 a vertical glass fiber on which it
exerts a force F (Fig. 2B). We denote xðtÞ as the hook posi-
tion. We initially have x=−x0, and for x≥ 0 the hook location
corresponds to the deflection of the fiber from its initial
vertical position.
An example of a capillary contraction is presented in Fig. 2D,

where oil has a viscosity η = 1 Pa·s. As soon as the contact is
established between the solid rod and the wetting liquid in the
tube (top image), a capillary force F0 ≈ 100 μN attracts the tube,
which moves to the right. The “capillary muscle” contracts and it

generates a force as soon as the hook meets the vertical fiber.
The time indicated on each picture reveals a nonlinear con-
traction. We have achieved contractions for two different x0, 7.6
and 36 mm. Both contractions lead to the same equilibrium state
xmax ≈ 38 mm but with different dynamics, as shown on Fig. 3B.

A

C

B

Fig. 1. (A) Plate of Borelli’s De Motu Animalium. Figure courtesy of ref. 6.
(B) Isotonic lever for human subjects [from Wilkie (11)]. A, hand grip at-
tached to cable; B, catch to hold lever up at the end of movement; C, fixed
contact; D, lever with moving contact; E, weight. (C) Force–velocity results
obtained with two different subjects: red squares, D.W.; black circles, L.M. The
solid lines are Eq. 1, with F0 = 196 N, vmax =b. F0=a= 7.5 m=s, and F0=a= 5 for D.
W., and F0 = 200 N, vmax = 7.0 m=s, and F0=a=2.1 for L.M. (data from ref. 11).

A C1

C2B

D

Fig. 2. Experimental setup of a capillary muscle and its biological in-
spiration, the sarcomere. The steel wire is equivalent to the myosin fila-
ment that slides in the silicone oil tube, which stands for the actin filament.
(A) Position at t = 0, corresponding to relaxed state of the sarcomere (C1).
(B) Position at t >0, corresponding to the contracted state of the sarcomere
(C2). (D) Example of capillary contraction obtained with 2r = 1.8 mm, 2R=
5 mm, η = 1 Pa·s, γ = 22 mN/m, k = 3.3 μN/m, and x0 = 7.6 mm.
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We extract from the deflection xðtÞ both the force FðtÞ= kxðtÞ
and the velocity v= dx=dt. The relation FðvÞ between the force
and the velocity is displayed in Fig. 3 for the two values of x0
(7.6 mm in red squares, and 36 mm in blue circles). This figure
reveals that F decreases as the velocity v increases in a way remi-
niscent of the one observed with muscles (Fig. 1C).

Capillary Muscle: Model
In the above experiment, the capillary driving force is F0 = 2πrγ,
whereas the resisting forces are the elastic force F related to
the elastic glass fiber, the viscous friction Fη in the glass tube,
and the inertia Fi of the floating tube. Using the values from
Fig. 2D, we get F0 ≈ 100 μN. In that experiment, the mass of
the compound (filled tube plus floater) is M = 15  g. Using G
for the characteristic acceleration, we evaluate in Fig. 2D the
inertia term Fi =MG to 0.1 μN because G≈ 10−5  m=s2. New-
ton’s law, Fi = F0 −F −FηðvÞ, thus reduces to the quasi-steady
limit, F =F0 −Fη.

Elastic Force, F. The deflection of a thin elastic rod (diameter, 2rf ;
length, Lf ) under the action of a localized force F is a classical
problem since Euler’s elastica (18). In the small slope limit, the
elastica predicts a linear relationship between the force F and the
deflection xmax of the fiber as follows:

F = k  xmax     with    k=
3EI
L3
f

, [2]

where E and I stand for Young’s modulus and moment of
inertia, respectively. For a cylindrical glass fiber, E= 64 GPa
and I = πr4f =4. We tested the linearity of Eq. 2 using wetting
liquids of low viscosity, to reduce the time to reach equilib-
rium. Because the applied force F = 2πrγ depends on both the
radius r of the steel wire (Fig. 2) and on surface tension, we
varied both parameters to increase the range of loads. For
each experiment, once the contact between the wire and the
wetting liquid is established, we wait for equilibrium and

measure the final fiber deflection xmax. The relation FðxmaxÞ is
indeed found to be linear, as shown in Fig. 4A, from which we
deduce a stiffness k = 3.3 μN/mm. With rf = 120 μm and Lf =
21 cm, the value expected from Eq. 2 is 3.4 μN/mm, in good
agreement with the experiment.

Viscous Force, Fη. Without glass fiber, Fig. 4B shows that the tube
moves along the steel wire with a diffusive type of dynamics:
ðx+ x0Þ2 ∼ t, as soon as the wire contacts the liquid in the tube
[xðt= 0Þ=−x0]. Even if there is no fiber here, we still use the
notation x+ x0 to be consistent with the conventions defined in
Fig. 2. This distance simply represents the wetted length along
the steel wire (Inset in Fig. 4B).
As for Washburn’s imbibition (19, 20), the diffusive-like be-

havior results from a balance between a constant driving force
(2πrγ) and a viscous resisting force, αηv2πðx+ x0Þ=lnðR=rÞ. In
this latter expression, v= dðx+ x0Þ=dt and α is a coefficient

A

B

Fig. 3. (A) Normalized force F=F0 as a function of the reduced velocity of
contraction v=vmax obtained with the oil used in Fig. 2D and two initial
values of x0 = 7.6 mm (red squares) and x0 = 36   mm (blue circles). The solid
lines are the best fits obtained with Hill’s equation (Eq. 1) using F0=a= 0.34
(blue circles) and F0=a= 2.17 (red). The inset (B) shows the dynamics of
capillary contraction in these two experiments.

B

A

Fig. 4. (A) Relationship between the maximal deflection of the fiber xmax

and the applied force F =2πrγ. Inset is a sketch of the experiment. (B) Time
evolution of the square of the wetted distance x + x0 for 2r = 1.8 mm and
silicone oil V1000 (η = 1 Pa·s and γ = 0.022 N=m).
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accounting for the exact structure of the velocity profile in the
tube (α= 1 when the tube is centered). This balance yields the
following:

ðx+ x0Þ2 = 2γr
αη

ln
�
R
r

�
t. [3]

Using R= 2.5 mm, γ = 0.022 N=m, and η = 1 Pa·s, we get from
the fit (thin solid line) in Fig. 4B: α≈ 0.72.

Hill’s Equation for a Capillary Muscle. The quasi-steady equilibrium
F =F0 − 2παηvðF=k+ x0Þ=lnðR=rÞ can be rewritten as follows:

F
F0

=
1− v=vmax

1+ ðF0=aÞ v=vmax
, [4]

with F0 = 2πrγ, F0=a= 2πrγ=kx0, and vmax =F0 lnðR=rÞ=2παηx0.
This equation is identical to Hill’s equation (Eq. 1). The solid
lines in Fig. 3 correspond to hyperbolic fits obtained with Eq. 4
and F0=a= 2.17 (red squares) and F0=a= 0.34 (blue circles). Since
F0 = 2πrγ and k have not been changed, F0=a=F0=k. x0 should
vary as 1=x0. This is indeed what we measure because
2.17=0.34≈ 36=7.6. The larger x0, the smaller F0=a and the closer
we get to the asymptotic linear behavior F=F0 = 1− v=vmax expected
for F0=a= 0.

The Sliding-Filament Model and Its Capillary Analog
Capillary Analog. Analogies between liquids and tissues have led
to valuable findings in the context of embryonic mutual envel-
opment (21) or tissue spreading (22). Steinberg showed that
embryonic tissues may behave like liquids and can be characterized

by a well-defined surface tension (23). This analogy lately ex-
tended to the spreading dynamics of cellular aggregates (24, 25).
Here, we pursue this kind of analogy to illustrate the myosin–
actin interaction in a muscle. The muscle contraction results
from the actin–myosin interactions. Each myosin head can be in
two different states, attached to the actin filament or detached
from the actin filament. We denote ΔEhead = Eattached − Edetached as
the difference of energy of a myosin head between these two
states. This energy is negative once calcium is supplied, thus
leading to actomyosin binding, and it remains positive without
calcium. When a myosin head binds to actin, it induces an energy
variation ΔEhead and it occupies a surface S0 ∼ l2, where l is the
typical size of the myosin head. This implies an equivalent sur-
face energy γeq =−ΔEhead=S0, analogous to the estimation of a
liquid surface tension kT=a2, where kT is a typical van der Waals
cohesion energy and a2 is a molecular surface area (20). The
total energy involved in a thick filament can then be expressed
as follows:

ΔE =ΔEhead

S0
  S=−γeq  S, [5]

where S=S0 is the total number of myosin heads (and S is the
attachable surface area). Because −ΔEhead is the typical energy
released during ATP hydrolysis (30  kJ=mol) and because the
head of myosin is around 10 nm, one gets γeq ≈ 0.5 mN=m.
Our capillary device can be seen as a physical analog of the

myosin/actin system, as sketched in Fig. 2: the solid rod (“myo-
sin”) slides in a wetting liquid (“actin”). As the myosin rod
penetrates the actin tube by a distance x+ x0, its energy varies by
an amount ΔE = 2πrðx+ x0Þðγsl − γsvÞ, where γsl and γsv stand for
solid–liquid and solid–vapor surface tension, respectively. Using
Young’s equation, we get ΔE =−γ   cos  θ 2πrðx+ x0Þ, where θ is
the contact angle and γ is the liquid–vapor surface tension (26).
The wetting limit (cos θ> 0) corresponds to the “calcium” state

A B

Fig. 5. (A) Model for the motility cycle of muscle myosin extracted from ref.
36. (Scale bar in frame 4: 6 nm.) Myosin is a dimer of two identical motor
heads (catalytic cores are blue; lever arms in the prestroke ADP-Pi state are
yellow) anchored to the thick filament (Top) by a coil (gray rod extending to
the Upper Right). In the ADP-Pi bound state, the catalytic core weakly binds
to actin. Frame 2: One head docks properly onto an actin binding site
(green). The two heads act independently, and only one attaches to actin at
a time. Frame 3: Actin docking causes phosphate release from the active site.
The lever arm then swings to the poststroke, ADP-bound state (red), which
moves the actin filament by 10 nm. Frame 4: After completing the stroke,
ADP dissociates and ATP binds to the active site, which rapidly reverts the
catalytic core to its weak-binding state. The lever arm recocks back to its
prestroke state (i.e., back to frame 1). (B) Cycle of attachment A–force gen-
eration B–detachment C.

Fig. 6. Example of capillary relaxation obtained for a superhydrophobic
wire initially forced into a tube filled with water: The tube moves so as to
expel the wire.
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where penetration in the actin bundle is favored, whereas the
nonwetting limit cos θ< 0 corresponds to the no-calcium state.
For θ= 0, we simply have the following:

ΔE =−γ  S, [6]

where S= 2πrðx+ x0Þ is the wetted surface area of the “myosin”
rod. This expression is identical to Eq. 5. The liquid viscosity leads
to dissipation and it mimics the energy consumption of the muscle,
which we now discuss together with its link with Hill’s equation.

Sliding Filament and Hill’s Equation.According to Needham (4), “the
first hints of the sliding-filament mechanism of contraction were
given by the low-angle X-ray diffraction patterns obtained by H. E.
Huxley with living and glycerol-extracted muscle” (27). A theory
for the contraction based on this sliding-filament model was then
proposed by A. F. Huxley in 1957 (16), where different parameters
were chosen to approach Hill’s equation. In 1968, Deshcherevskii
(17) proposed to derive Hill’s equation using some assumptions on
the sliding-filament model. We present the main steps of this
model and then establish the connection with capillary muscles.
In the sliding-filament model, the force is generated by myosin

heads connecting myosin to thin actin filaments (Fig. 2C). This
scenario has been confirmed since refs. 28 and 29, and we
summarize the force cycle in Fig. 5A. In the absence of ATP,
myosin heads are attached to actin. Although this state is very
short in living muscle, it is responsible for muscle stiffness in
death. As binding ATP, myosin heads release from actin fila-
ments, which requires energy.
Deshcherevskii considered three main stages for the force

cycle (Fig. 5B). A myosin head is either “free” (A), or developing
an active force (B), or detaching (with a breaking force) (C).
Each head moves from one state to another one following the
sequence A–B–C–A. Denoting n and m as the number of myosin
heads in the states B and C and αD as the total number of myosin
heads in one-half a sarcomere, Deshcherevskii expresses the rate
of change of both populations as follows:

dn
dt

= k1. ½αD − ðn+mÞ�− v
l
n, [7]

dm
dt

=
v
l
n− k2.m, [8]

where k1 is the constant rate for the transition from state A to B,
and k2 is the constant rate of opening bridges leading to a tran-
sition from C to A; l is the mean value of conformational trans-
formation of the myosin head during the power stroke (l≈ 10  nm).
Because v is the velocity of relative displacement of the threads, the
ratio l=v is the time after which one active head switches from
being stretched (active) to compressed (resisting). In the steady
regime where v is a constant, the populations of the three stages
A, B, and C remain constant on average and one deduces vn=l=
k1   ðαD − ðn+mÞÞ and vn=l= k2m. Different groups have worked
on actomyosin interactions outside sarcomere. Assuming that the
active and breaking forces developed by the myosin head are
identical and equal to f, found to be on the order of 3  pN
(7, 30–33), the force developed by a sarcomere is F = f   ðn−mÞ.
Using the above expressions for n and m, we directly get Eq. 1
with F0 = αD. f , F0=a= 1+ k2=k1, and vmax = k2. l.
Identification with Eq. 4 provides some insight about the

analogy between sliding filaments and capillary muscles. As

expected from the previous section, the maximal force F0 = 2πrγ
in Eq. 4 corresponds to the force αDf developed by all myosin
heads. The force ratio F0=a= 2πrγ=kx0 in Eq. 4 is found here to
be only a function of the reaction rates 1+ k2=k1. Changing the
hook location x0 is thus a way to vary the ratio between the re-
action rates of the two transitions A–B and C–A. Finally, the
maximal velocity vmax of the capillary muscle is reached when the
hook first contacts the vertical fiber, that is, for F0 = 2παηvmaxx0=
lnðR=rÞ. The velocity vmax is reached when n=m, that is, when the
inactivation rate vmax=l equals the detaching rate k2. Hence the
viscosity allows us to tune the reaction rate of the transition C–A.

Inverted Capillary Motion. Our capillary device was found to
generate a contractile force analogous to that of a real muscle.
From a practical point of view, it is worth exploring the possi-
bility of inducing a reverse motion. To do so, we inverted the
wettability by treating the steel wire with a hydrophobic colloidal
suspension (Glaco; Soft99). After drying the solvent, the fiber
was observed to be superhydrophobic (advancing and receding
angles of 171± 3° and 164± 3°). Starting from a configuration
where the fiber is immersed in a tube filled with water, we ob-
serve in Fig. 6 that the motion indeed takes place in the reverse
direction (compared with Fig. 2D) to minimize the contact be-
tween the liquid and the wire. This behavior is reminiscent of the
transition from contraction to relaxation (C2–C1 transition in
Fig. 2). If the device is let free, the wire gets eventually expelled
from the tube. This experiment also shows that a system of tunable
wettability [by means of temperature or light (34)] should be able
to successively generate contraction and relaxation.

Conclusion and Perspectives
We have designed a minimal capillary model of force generator
following Hill’s contraction law. The model is based on three
main characteristics, which exist both in muscles and in its cap-
illary analog:

i) Inertia is not involved and the system contracts in a quasi-steady
regime.

ii) The force driving the contraction is based on surface af-
finity between two surfaces that can slide with respect to
each other.

iii) The device not only generates a force but also dissipates
energy.

It was often proposed, in the biomechanics community, that
Hill’s equation can be recovered with a spring-dashpot macro-
scopic model involving a non-Newtonian dissipation (13). Here,
we showed that a Newtonian fluid also allows to recover the
hyperbolic force–velocity relation, provided one accounts for the
sliding structure of the contraction, which induces a nonlinear
term “xv” in the dissipation, which is necessary to get Hill’s equa-
tion. The analogy might be pursued to understand other systems,
such as living single cells, which have been lately found to also
follow Hill’s equation (35).
Finally, a capillary muscle can be discussed in terms of in-

novation. We have shown that tuning the contact angle allows
the cell either to contract or to relax. As in real muscles, this
elementary contractile unit can be coupled to other identical
contractile units, in series or parallel to increase the contraction
speed or the force generated. Microfluidics and robotics are
possible areas of application.
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