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Figure 6. Maximum spatio-temporal growth rate σmax of the helical mode m= 1 (thick solid
line), and of the modes of azimuthal wavenumbers m= 0, 2, 3, 4. Λ= −1.2, S = 1, M∞ = 0 and
Re∞ = 2000, (a) as a function of the density ratio, at M∞ = 0. (b) as a function of the Mach
number, at S = 1.

we investigate the convective/absolute transition of axisymmetric wakes, and identify
the selected dominant mode that leads the transition in the laboratory frame (vg = 0),
in a parameter space including the velocity ratio Λ, the steepness parameter D/θ , the
density ratio S, and the Mach number M∞. For simplicity, a control parameter is said
to be destabilizing (resp. stabilizing) when its variation results in an extension (resp.
reduction) of the domain of absolute instability.

4.1. Effect of the density ratio

We study the effect of the density ratio and the velocity ratio on the stability properties
of the base flow, for a wake of steepness parameter D/θ = 60 at zero Mach number.
The boundary of the domain of absolute instability in the (S, Λ)-plane is presented
in figure 7. We use a dashed curve when the transition is led by the axisymmetric
shear-layer mode and a plain curve when it is led by the helical wake mode. The
instability is absolute for combinations of parameters located in the shaded region,
labelled AU, and convective for all other combinations of parameters (CU-labelled
region).

The absolute instability boundary is reminiscent of that documented by Yu &
Monkewitz (1990) in the case of two-dimensional wakes, namely large high (resp.
low) density ratios are destabilizing (resp. stabilizing) and promote absolute (resp.
convective) instability. A discontinuity in the boundary occurs at S = 0.396, a point
marked by an open circle in figure 7, where the dominant mode switches from the
axisymmetric shear-layer mode (S � 0.396) to the helical wake mode (S � 0.396). In
the following, this particular point where both modes are simultaneously marginally
absolutely unstable is referred to as the crossover point. Note also that the marginal
curve crosses the Λ = −1 line at S = 1.551. Therefore, wakes with sufficiently high
density ratios can be absolutely unstable to m =1 perturbations (wake mode), even
with a coflow on the axis. The threshold is found to be asymptotic to Λ = −0.9 as
S increases, indicating that the critical velocity ratio depends weakly on the density
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Figure 7. Boundary separating the regions of absolute (shaded domain labelled AU) and
convective (domain labelled CU) instability in the (S,Λ)-plane, for D/θ =60, M∞ = 0 and
Re∞ = 2000. The transition to absolute instability is led either by the axisymmetric shear-layer
mode (dashed line) or the helical wake mode (solid line). The open circle marks the crossover
point corresponding to the change in the selection of the dominant mode. The dash-dotted
line is the curve of marginal absolute instability in the absence of baroclinic effects.

ratio: for instance, absolute instability occurs in presence of a coflow rate of 5.3%
at S = 10 and of 5.8% at S = 4. On the contrary, for low density ratios, the critical
velocity ratio required to reach absolute instability is dramatically affected by small
variations of S: for instance, absolute instability occurs in presence of a counterflow
rate of 22.5% at S = 0.5 and of 51.7% at S = 0.2.

This striking behaviour may be understood by considering the effect of the
baroclinic torque, as first suggested by Soteriou & Ghoniem (1995) for the stability of
homogeneous and non-homogeneous shear layers. The main idea is that a baroclinic
torque arising from base flow density gradients and from the pressure perturbations
Γ = (∇ρ0 × ∇p′)/ρ2

0 can act as a source for the vorticity perturbations, as discussed
by Nichols et al. (2007) in the case of non-homogeneous round jets, for instance. On
similar jet configurations, Lesshafft & Huerre (2007) have shown that the impact of
baroclinic effects can be assessed by solving a modified dispersion relation, in which the
linearized momentum equations are artificially forced in order to cancel the baroclinic
torque, which has only one non-trivial component Γθ eθ due to the axisymmetry. This
method is generalized here to the case of non-axisymmetric disturbances, leading to
a two-component baroclinic torque Γθ eθ + Γzez, where

Γθ = ik0 ∂rρ0

ρ2
0

p′(r)e(ik0z+mθ−ω0t), (4.1a)

Γz = −i
m

r

∂rρ0

ρ2
0

p′(r)e(ik0z+mθ−ω0t), (4.1b)

Γz being non-zero for m 	= 0. More details on the vorticity equations can be found in
Appendix B. The absolute instability boundary associated to the modified dispersion
relation, where the two-component baroclinic torque has been cancelled, is shown in
figure 7 (dash-dotted line). When the baroclinic effects are removed, the transition from
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Figure 8. (a) Displacement η(r = 1, θ = 0, z) (drawn with an arbitrary finite amplitude) and
baroclinic torque Γt associated to the marginally absolutely unstable eigenmode, projected
along the vector t(r = 1) tangent to the phase lines of η, for S = 2.5. The rotation induced by
the torque is visualized by the white circles with arrows. (D/θ = 60, M∞ = 0 and Re∞ = 2000).
(b) Same as (a) but for S = 0.45. This figure extends to non-axisymmetric perturbations the
arguments of Lesshafft & Huerre (2007) and Nichols et al. (2007) (see their figures 5 and 8,
respectively).

convective to absolute instability is led by the helical wake mode (m = 1) whatever
the value of the density ratio. For S = 1, forced and unforced marginal absolute
instability curves cross since the baroclinic torque vanishes in the homogeneous case.
Surprisingly, the convective–absolute transition is nearly independent of S when the
baroclinic torque is cancelled, even though the density ratio still enters the dispersion
relation, the relative difference not being measurable for S > 1, and being negligible
for S < 1 (0.9% at S = 0.5 and 3.5 % at S = 0.1). It may therefore be concluded that
the baroclinic torque Γ promotes the onset of absolute instability in heavy wakes
and delays it in light wakes. The physical mechanism proposed by Lesshafft &
Huerre (2007) to explain the stability of axisymmetric disturbances in hot jets may
be extended to non-axisymmetric perturbations by examining how the baroclinic
torque associated with the spatio-temporal absolute eigenmode interacts with the
associated displacement η of the shear layer at r = 1, computed from the radial
velocity perturbation as ∂tη + W∂zη = u′, so that

η =
−iu′

k0Wb − ω0
. (4.2)

Considering the vector tangent to the phase lines of η, defined as t = k0
r eθ − m/rez,

only the component of the baroclinic torque along t

Γt = Γ · t
‖t‖ (4.3)

plays a role in the displacement of the shear layer. Figure 8(a) shows the shear-layer
displacement and the spatial distribution of Γt in a meridional plane, computed for
the helical wake mode at the absolute instability threshold, for a heavy wake of
ratio S =2.5. All spatial amplifications are neglected for clarity by setting the spatial
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Figure 9. Baroclinic factor Υ at the absolute instability threshold, i.e. along the curve Λ(S)
plotted in figure 7, valid only in the non-shaded area where the wake mode leads the absolute
transition (D/θ = 60, M∞ = 0 and Re∞ = 2000). In the shaded area are reported the values of
Υ of the mode associated with the wake mode saddle point, followed by continuity.

growth rate −k0
i to zero. Results are reminiscent of that documented in Lesshafft &

Huerre (2007) and Nichols et al. (2007): the baroclinic torque is concentrated within
the shear layer, in regions of alternating sign. The baroclinic torque is destabilizing
since it induces a clockwise rotation when η decreases with z, and a counterclockwise
rotation when η increases with z. This effect of the baroclinic torque is thus determined
by the relative phase φ of the projected torque Γt , evaluated in the shear layer (r = 1),
with respect to the displacement η

φ = arg{Γt |r=1} − arg{η|r=1}. (4.4)

Because there is almost a quadrature advance between Γt and η (φ = 1.90), the
baroclinic torque tends to enhance the deformation of the shear layer, and is therefore
destabilizing, as indeed is predicted by the direct stability analysis. Figure 8(b) shows
similar results for a light wake of density ratio S = 0.45, but owing to the change of
sign of the base flow density gradient, we find in that case a quadrature delay between
Γt and η (φ = −1.77), so that Γt now induces stabilizing deformations that oppose
the shear-layer deformation. These results, generalizing the argument of Lesshafft &
Huerre (2007) to the case of non-axisymmetric disturbances, show that the action
of the baroclinic torque may result in an increase or in a decrease of the instability
growth rate. This baroclinic effect depends on the magnitudes of Γt and on its relative
phase φ with the displacement η: the stabilizing (resp. destabilizing) effect is maximum
when φ is −π/2 (resp. φ = π/2). When φ is close to 0 or π, the leading-order effect
of the torque is neutral, as it then displaces upstream or downstream the shear-layer
undulation. Therefore, we propose to cast the effect of the baroclinic torque in the
single baroclinic factor

Υ = sinφ|Γt

η
|r=1, (4.5)

i.e. we consider baroclinic effects for a fixed amplitude of the displacement. Figure 9
shows the calculated value of Υ at the absolute instability threshold of the helical
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Figure 10. (a) Strouhal number St and (b) absolute wavelength λ0 as a function of the density
ratio at the absolute instability threshold. D/θ = 60, M∞ = 0 and Re∞ = 2000. The curve is
dashed when the transition is led by the axisymmetric shear-layer mode, and solid when it is
led by the helical wake mode.

wake mode. In agreement with the results discussed from figure 7, values of Υ indicate
a destabilizing effect of the baroclinic torque for S > 1 (positive values), and a strong
baroclinic stabilization as S decreases to zero (low negative values).

Figure 10 presents the Strouhal number St and wavelength λ0 as a function of
the density ratio at the absolute instability threshold, i.e. for parameter couples
(S, Λ) varying along the boundary of the absolutely unstable domain shaded in
figure 7. At the crossover ratio S = 0.396, both curves undergo a brutal discontinuity,
owing to the change in the selection of the dominant mode, from the axisymmetric
shear-layer mode to the helical wake mode. When the density ratio increases in the
range 0.1 � S � 0.396, the axisymmetric shear-layer mode dominates: the absolute
wavelength remains constant, of order 0.5 wake diameter, and the absolute frequency
is high and decreases from 1 to 0.9. When S is increased above 0.396, the helical wake
mode dominates: the absolute wavelength jumps to 4 wake diameters and grows up
to 10 diameters. At the same time, the absolute frequency drops to 0.3 and keeps
decreasing to 0.1 at S = 10.

4.2. Effect of the steepness parameter

We investigate the effect of varying the steepness parameter on the absolute instability
threshold of the flow, keeping M∞ = 0.

Figure 11 presents absolute instability boundaries when the steepness parameter
varies within the range 40 � D/θ � 160. The crossover points between the
axisymmetric shear-layer mode and the helical wake mode are marked by an open
circle. All curves reflect the same trend as for D/θ = 60 (figure 7). The steepness
parameter has essentially no effect at high density ratios, where the helical wake mode
leads the transition. However, at low density ratios, increasing the steepness parameter
has a stabilizing effect, and the domain of absolute instability shrinks significantly.
The density ratio at the crossover point monotonically increases with D/θ , from
0.202 at D/θ =40 to S = 0.673 at D/θ = 160, whereas at the same time, the rate of
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Figure 11. Boundary separating the regions of absolute (AU) and convective (CU) instability
and crossover points (�) in the (S,Λ)-plane for the steepness parameters 40, 80, 120 and 160,
at M∞ =0 and Re∞ = 2000 (− − −, SLM0; ——–, WM1).
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Figure 12. Locus of the crossover point in the (S,D/θ )-plane, for M∞ = 0 and Re∞ = 2000.
This curve separates domains where the transition to absolute instability is led, respectively,
by the axisymmetric shear-layer mode (domain labelled SLM0) and the helical wake mode
(domain labelled WM1). Open circles correspond to the crossover points for the four values
of D/θ plotted in figure 11 and are labelled here with their corresponding velocity ratio Λ.

counterflow necessary to reach absolute instability decreases from 48.6% (Λ = −2.89)
to 23.4% of the free-stream velocity (Λ = −1.61). This effect is synthesized in figure 12,
which shows the variations of the density ratio at the crossover point as a function
of D/θ . Values of the critical velocity ratios Λ below which the instability becomes
absolute are reported along the crossover curve for the four values of D/θ presented
in figure 11. The axisymmetric shear-layer mode is dominant for combinations of
parameters located above the curve (region labelled SLM0), and the helical wake
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threshold for steepness parameters D/θ = 40, 80 and 120. M∞ = 0 and Re∞ = 2000 (− − −,
SLM0; ——–, WM1).

mode is dominant for parameters located below the curve (region labelled WM1).
The convective–absolute transition is essentially led by the helical wake mode, the
axisymmetric shear-layer mode being dominant only at low density ratios and large
steepness parameters. For small values of the steepness parameter D/θ � 32, the
helical wake mode is dominant for all density ratios 0.1 � S � 10 considered in this
study. Note that in the homogeneous case (S = 1), the absolute instability is led by
the helical wake mode for all steepness parameters, as reported in Monkewitz (1988)
for incompressible homogeneous wakes. Figure 13 shows the Strouhal number and
wavelength at the absolute instability threshold for different values of the steepness
parameter D/θ . The curve trends are similar to that presented in figure 10, namely
the frequency and the wavelength respectively increases and decreases when the
density ratio increases, and all curves are discontinuous at the crossover point
characterizing the change in the selection of the dominant mode. For low values
of S, the axisymmetric shear-layer mode is dominant and selects high frequencies
increasing with D/θ (St ∼ 0.6 for D/θ = 40 and 1.5 � St � 1.9 for D/θ = 120), and
short wavelengths decreasing with D/θ (of order 0.9 wake diameter for D/θ = 40 and
0.3 wake diameter for D/θ =120, these values being almost independent of S). For
higher values of S, the helical wake mode is dominant and is characterized by low
frequencies 0.1 � St � 0.4 depending on S, but almost independent of the steepness
parameter, and by large wavelengths varying between 4 and 10 wake diameters, the
values obtained for D/θ = 80 and 120 being equal.

The behaviour is different for smaller values of the steepness parameter. We present
in figure 14 the absolute instability threshold in the range D/θ � 15. For all values
of D/θ in that range and for all density ratios, convective–absolute transition is led
by the helical wake mode, a result consistent with that discussed from figure 12. In
opposition to the behaviour described in figure 11, lowering D/θ has a stabilizing
effect for all density ratios S, and it results in a significant reduction of the absolutely
unstable region. In particular, absolute instability requires counterflowing streams at
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Figure 15. Absolutely unstable domains (AU) in the (S,D/θ )-plane for three velocity ratios
Λ= − 1, −1.2 and −1.5, at M∞ = 0 and Re∞ = 2000. For these values of Λ, the transition
is led by the helical wake mode only (no crossover point in the domain). The shaded area
corresponds to D/θ < 6.5, these values not being allowed for profiles defined by (2.6)–(2.7).

D/θ =8, even for heavy wakes, since the critical velocity ratios are located in this
case below Λ = − 1 for all values of S.

The stability properties of the helical wake mode are further investigated by
considering regions of absolute and convective instability in the (S, D/θ)-plane for
different values of Λ. Figure 15 presents the absolute instability boundaries obtained
for Λ = −1.5, −1.2, and −1, corresponding to counterflow rates of 20%, 9.1% and
zero. Note that since velocity ratios below −1.61 are required for the axisymmetric
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shaded area of (a). The M∞ = 0 curve has been removed for clarity.

shear-layer mode to be dominant (see figure 12), the transition to absolute instability
is led by the helical wake mode for all the values of Λ presented in figure 15.
In the absence of counterflow (Λ � −1), the lowest density ratio at which an
absoluteinstability exists is S =0.982, for D/θ =19. For each value of Λ, the critical
density ratio for the helical wake mode increases slightly when D/θ varies from 30 to
160, a behaviour corresponding to the stabilizing effect discussed from figure 11. The
trend is reversed when D/θ is decreased further below 15, as the critical density ratio
increases significantly, illustrating the stabilizing effect shown in figure 14. For Λ = −1
(resp. Λ = −1.2), wakes with steepness parameters D/θ � 9 (resp. D/θ � 7) are found
to be convectively unstable for all density ratios (part of the curves parallel to the
S-axis in figure 15). For Λ = −1.5, absolute instability can be reached by increasing
sufficiently the density ratio, even for the smallest steepness parameter D/θ = 6.5
accessible through profiles (2.6). This means that for Λ = − 1.5, the Gaussian wake
(associated to D/θ = 6.5 and N =1) is absolutely unstable for S � 1.14, whereas
for Λ = −1.2 or larger, it is convectively unstable for all values of the density
ratios.

4.3. Effect of the free stream Mach number

We consider now the effect of the Mach number on the stability properties of the flow.
Our calculations show that the effect of compressibility is negligible for free-stream
Mach numbers below 0.3, the variations of the critical parameters being less than
10%. Figure 16(a) presents the absolute instability boundaries in the (S, Λ)-plane
for D/θ =120 and M∞ = 0, 0.5 and 0.8. In the homogeneous case (S = 1), increasing
the Mach number to high subsonic values is seen to weakly stabilize the helical
wake mode, in agreement with the intuitive idea that compressibility slows down the
upstream propagation of disturbances and therefore favours convective instability. A
similar stabilizing effect is observed on the helical make mode when S � 0.65, and
for light wakes when the axisymmetric shear-layer mode is dominant. This stabilizing
effect of compressibility on the shear-layer mode is consistent with the analysis of
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Figure 17. Effect of the Mach number on the normalized baroclinic factor Υn at the absolute
instability threshold, for D/θ = 120 and Re∞ = 2000. (a) Helical wake mode for S = 0.5, valid
only in the non-shaded area where the wake mode leads the absolute transition for this density
ratio. In the shaded area are reported the values of Υn of the mode associated with the wake
mode saddle point, followed by continuity. (b) Helical wake mode for S = 2 (for this value of
S, the transition is led by this mode only). (c) Axisymmetric shear-layer mode for S =0.2 (for
this value of S, the transition is led by this mode only).

Pavithran & Redekopp (1989) on plane mixing layers. For S � 0.65, the helical wake
mode is destabilized by an increase of the Mach number (solid lines in figure 16(b)
when this mode is dominant), a behaviour in contrast with that of the axisymmetric
jet column modes, for which convective instability is promoted by increasing the Mach
number in the high subsonic regime, for all values of S (Monkewitz & Sohn 1988;
Jendoubi & Strykowski 1994). We propose to interpret these different compressibility
effects for light and heavy wakes as the result of a competition between the classical
stabilizing effect due to the decrease in the pressure wave speed, and baroclinic effects
discussed in § 4.1. Results are given in terms of the baroclinic factor Υ defined by
(4.5), normalized by the magnitude of the baroclinic factor of the incompressible
wake

Υn(M∞, S, Λ, D/θ, Re) =
Υ (M∞, S, Λ, D/θ, Re)

|Υ (M∞ = 0, S, Λ, D/θ, Re)| , (4.6)

so that Υn(M∞ = 0) = ± 1. Figure 17 shows the evolution of Υn as a function of the
Mach number for wakes of different density ratios. The case of a moderately light
wake of density ratio S = 0.5 is presented in figure 17(a), where the transition is led
by the helical wake mode for M∞ � 0.63. The increase of the negative baroclinic
factor corresponds to a decrease of the stabilizing effect at this density ratio, i.e. to
a destabilization. This suggests that the absolute instability triggered by an increase
of the Mach number arises from a weakening of the stabilizing baroclinic torque.
Figure 17(b) shows the case of a heavy wake of ratio S =2, where the transition is
led by the helical wake mode for all Mach numbers. The baroclinic torque remains
positive and almost constant until M∞ � 0.5 and then decreases rapidly, inducing a
decrease of the destabilizing effect at this density ratio, i.e. a stabilization consistent
with the effect observed in figure 16. The case of a very light wake of density ratio
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S = 0.2 is presented in figure 17(c), the transition being led by the axisymmetric
shear-layer mode for all Mach numbers. The results are similar to those obtained for
the S =0.5 wake, namely the baroclinic effect is destabilizing. Therefore, the global
stabilizing effect observed in figure 16 for the shear-layer mode does not result from
a variation of the baroclinic torque and should be blamed on the decrease in the
disturbance wave speeds when the Mach number is increased.

As a result of the stabilizing effect of the Mach number on the axisymmetric
shear-layer mode, and of its destabilizing effect on the helical wake mode for light
wakes, the crossover point is displaced in the region of very low density ratios as M∞
is increased (figure 16). The corresponding critical velocity ratio drops to very small
values, illustrating the necessity of strong counterflows to achieve the transition to
absolute instability at large M∞ and small S. For instance, at M∞ = 0, the crossover
density ratio is S = 0.625 with a critical counterflow rate of 23.7% of the free-stream
velocity (Λ = −1.62). At M∞ = 0.8, the crossover density ratio is S = 0.215 with a
critical counterflow rate of 70.1% (Λ = −5.70).

This tendency is visible in figure 18, which generalizes the results presented in
figure 12 to Mach numbers M∞ =0.5 and 0.8. Values of the velocity ratio at the
crossover point are reported for the same values of D/θ as in figure 12. Consistently
with the results presented in figure 16, the helical wake mode (m = 1) is promoted
as the dominant mode for high subsonic Mach numbers, this effect being more
pronounced for large values of D/θ . For small values of D/θ , the helical wake
mode leads the transition to absolute instability at all density ratios, a trend already
documented for M∞ =0.

Figure 19 presents the effect of the Mach number on the critical Strouhal number
St and wavelength λ0 at the absolute instability threshold for different values of
the Mach number, at D/θ =120. The frequency of both modes are lowered at
high subsonic Mach numbers, whereas the wavelength increases slightly. For the
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Figure 19. (a) Strouhal number St and (b) absolute wavelength λ0 at the absolute instability
threshold for Mach numbers M∞ = 0, 0.5 and 0.8, i.e. along the curves Λ(S) plotted in figure
16. D/θ = 120 and Re∞ = 2000 (− − −, SLM0; ——–, WM1).

axisymmetric shear-layer mode, we hence find values of approximately St ∼ 1.8 for
M∞ = 0 and ∼1.5 for M∞ =0.8, with wavelengths of order 0.3 wake diameter. For
the helical wake mode, we find Strouhal numbers 0.1 � St � 0.3, with wavelengths
varying between 4 and 10 wake diameters.

The properties of the helical wake mode are finally investigated by considering the
combined effect of M∞ and S in the particular configuration of zero centreline velocity
(Λ = −1). The absolute instability boundaries in the (S, M∞)-plane are presented
in figure 20 for different values of D/θ . Since the axisymmetric shear-layer mode
requires a counterflow to become absolutely unstable, the helical wake mode leads
the transition for all the combinations of parameters examined here. For all values of
the steepness parameter, the range of absolutely unstable density ratios is significantly
reduced by increasing the Mach number. For instance, in the range of density ratios
under consideration, the lowest steepness parameter at which an absolute instability
exists is D/θ =12 for M∞ =0.9, and D/θ = 9 for M∞ = 0. Note that the region of
absolute instability, quite limited for D/θ =10, extends dramatically when D/θ is
increased to 20, and then shrinks again when D/θ is further increased from 20 to 160.
This behaviour is associated to the non-trivial effect of D/θ described for M∞ =0 in
§ 4.2, both destabilizing and stabilizing effects being more pronounced as the Mach
number increases. For instance, in the range of density ratios under investigation, no
absolute instability occurs for Mach numbers above 0.615 at D/θ = 10, and above
0.773 at D/θ = 160.

5. Conclusion
The convective–absolute transition in axisymmetric wakes has been investigated for

a fixed Reynolds number Re∞ = 2000, in a parameter space including the velocity and
density ratios, the steepness parameter and the free-stream Mach number. Depending
on the parameter settings, i.e. to the flow regime, the transition to absolute instability is
led either by a large-scale helical wake mode of azimuthal wavenumber m =1, or by a
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Figure 20. Absolutely unstable domains (AU) in the (S,M∞)-plane as a function of D/θ , at
Λ= − 1 and Re∞ = 2000. For this value of Λ, the transition is led by the helical wake mode
only (no crossover point in the domain).

small-scale axisymmetric shear-layer mode (m = 0). An increase of the density ratio or
an increase of the velocity ratio promotes absolute instability, no matter which mode
leads the transition. Varying the Mach number has a more complex effect. For very
light or heavy wakes, increasing the Mach number promotes convective instability,
but for intermediate values of the density ratio, an increase of the Mach number
promotes an absolute instability of the helical wake mode, a behaviour strikingly
different from that documented for other shear flows. We show that this behaviour
may be attributed to the effect of the baroclinic torque. The axisymmetric shear-layer
mode is dominant only for low density ratios and high rates of counterflow on the
wake axis (large negative velocity ratios). In all other cases, and in particular for small
rates of coflow or counterflow more realistic of a real afterbody wake, the transition to
absolute instability is led by the helical wake mode. The frequency of the helical wake
mode at the absolute instability threshold is weakly dependent on the parameters,
and is characterized by Strouhal numbers varying in the range 0.1 � St � 0.3. These
results give credence to the interpretation of the large-scale oscillation observed in
the experimental studies of flows past spheres, disks and more complex axisymmetric
afterbodies in terms of a nonlinear global mode triggered by a local transition to
absolute instability. In the whole range of parameters explored here, the azimuthal
wavenumber and frequency selection is in qualitative agreement with such a mode
made of a front located at the upstream boundary of the absolutely unstable region
(separated or not from the body), and followed by a saturated wavetrain (Couairon &
Chomaz 1999; Pier 2002). In that case, the front region is the wavemaker and imposes
its azimuthal wavenumber and frequency to the entire flow.

The authors acknowledge the financial support of CNES (the French Space Agency)
and ONERA (the French Aerospace Lab) within the framework of the research and
technology program Aerodynamics of Nozzles and Afterbodies.
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Appendix A. Linearized equations of motion
The set of equations is presented for the eigenfunction ( ρ ′, u′, v′, w′, t ′ ).

(kWb − ω)ρ ′ +

[
drρb + ρb

(
dr +

1

r

)]
(−iu′) + m

ρb

r
v′ + kρbw

′ = 0, (A 1a)
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(A 1e)

where dr and drr denote the r derivatives of first and second order. The pressure
perturbation p′ is built from ρ ′ and t ′ by the linearized ideal gas relation

p′ = Tρ ′ + ρt ′ . (A 2)

Appendix B. Baroclinic effect and forced equations of motion
For clarity, we detail here the formalism only in the case of the compressible

inviscid problem. However, the method is identical for the viscous equations, although
additional non-homogeneous terms arise due to the presence of dissipation. Note
that non-homogenous terms exist in the continuity and energy equations, but our
calculations strongly suggest that their effect is negligible compared to that of the
baroclinic torque.

In the presence of volumic source terms Sr , Sθ and Sz, the momentum equations
can be written as

∂tu
′ = −Wb∂zu

′ − 1

γM2
∞

1

ρb

∂rp
′ + Sr (B 1a)

∂tv
′ = −Wb∂zv

′ − 1

γM2
∞

1

ρb

∂θp
′ + Sθ (B 1b)

∂tw
′ = −Wb∂zw

′ − 1

γM2
∞

1

ρb

∂zp
′ + Sz . (B 1c)
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The vorticity perturbation Ω = ∇ × u evolves as

∂tΩ
′
r = −Wb

(
1

r
∂2
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′
)

+
1

r
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r
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where we recognize the expression of the baroclinic torque Γ = ∇ρb × ∇p′/ρ2
b .

In order to eliminate the effect of the baroclinic torque, the source terms are selected
so as to satisfy

1

r
∂θSz − ∂zSθ = 0, (B 3a)

∂zSr − ∂rSz =
1

γM2
∞

∂rρb

ρ2
b

∂zp
′ = Γθ, (B 3b)

∂rSθ − 1

r
∂θSr = − 1

γM2
∞

∂rρb

ρ2
b

1

r
∂θp

′ = Γz. (B 3c)

All source terms are considered as additional variables of the generalized eigenvalue
problem. The modified dispersion relation is therefore constructed from the unforced
continuity and energy equations, the forced momentum equations (B 1) and the source
equations (B 3).
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