A Frequency Selection Criterion in
Spatially Developing Flows

By Jean-Marc Chomaz,* Patrick Huerre,’ and Larry G. Redekopp

The possible existence of global modes or self-excited linear. resonances in
spatially developing systems is explored within the framework of the WKBJ
approximation. It is shown that the existence and properties of the dominant
global mode may be deduced from the variations of the local absolute frequency
wo{ X') with distance X. The main results are summarized in two theorems: (1)
A system with no region of absolute instability does not sustain temporally
growing global modes with an O(1) growth rate, (2) If the singularity X, closest
to the real X-axis of the complex function w,(X) is a saddle point, the most
unstable global mode has, to leading order in the WKBJ approximation, a
complex {requency oy( X ). Thus, it will be temporally growing only if Im w( X,)
is positive.

1. Introduction

The concept of global modes in spatially developing systems has been intro-
duced in several earlier studies [1-5} of the Ginzburg-Landau model with
varying cocfficicnts. In the present context, a global mode is a time-harmonic
wavepacket with amplitude and phase modulations occurring on the same
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length scale as the spatial inhomogeneities of the system. From a more mathe-
matical point of view, its frequency and spatial distribution satisfy a linear
cigenvalue problem involving the entire physical domain of interest. The main
motivation for the study of such objects has been to demonstrate the possible
existence of purcly hydrodynamic resonances in spatially developing shear flows.

This type of description was first proposed by Koch [6] to explain the sharp
selection of a definitec wavenumber and frequency in the Karman vortex street
behind bluff bodies at low Reynolds numbers. Similar ideas have been indepen-
dently developed by Pierrehumbert [7] and Bar-Sever and Merkine [8] in the
study of baroclinic instabilities in geophysical flows. The conjecture made by
these authors is that hydrodynamic resonances, in other words temporally
growing global mades, are due to the coexistence, within the same flow, of a
region of local absolute instability and a region of local convective instability.
These notions, first introduced in the study of plasma instabilities [9—-12], allow
one fo differentiate, in a given reference frame, between the various responses
of a pardallel flow to localized disturbances. In convectively unstable flows, the
amplitude of the linear response at a fixed point decays to zero, whereas it
grows exponentially in time in absolutely unstable flows.

Resonances arising in shear flows have usually been described in terms of a
feedback loop composed of hydrodynamic verticity waves traveling downstream
and far-ficld acoustic waves traveling upstream [13]. Examples include wake
tones, jet tones, and edge tones, as reviewed by Rockwell and Naudascher [14].
In the present work, we wish to study a different class of resonance phenomena.
The global modes of interest here are of a purely hydrodynamic nature: they
only mvolve a combination of upstream and downstream vorticity waves in the
shear region, without the need for irrotational acoustic fluctuations.

Local absolute /convective instability concepts lead to an appealing classifica-
tion of spatially developing flows, provided one assumes that the length seale of
streamwise inhomogeneities in the basic flow is much larger than a typical
instability wavelength. In such circumstances, the absolute /convective nature of
the locally parallel flow may be defined unambiguously at each streamwise
station. FFor instance, incompressible spatially evolving mixing layers [15, 16] and
boundary layers {17] are locally convectively unstable everywhere. As a result,
they exhibit a strong sensitivity to forcing {18]. In the absence of coherent
external perturbations, measured spectra are broadband and one does not
observe sclf-sustained oscillations associated with global modes. By contrast,
wakes behind bluff bodies {6, 19-24] and low-density jets [25-27] may support
finite-amplitude lmit-cycle states when part of the flow is absolutely unstable.
Discrete frequency spectra are then obtained without applying external forcing,
which is an indication of the existence of self-sustained global modes. Finally,
there is an intermediate class of flows, for example homogeneous jets [4,5, 28],
where the basic profile is almost absolutely unstable, or where the region of
absolute Instability is too small. In such cases, the entire flow acts as a slightly
damped resonator. Frequency spectra are broadband, but with a peak at a
well-defined frequency.

It is impossible here to discuss the current state of the art in any detail.
Review articles have appeared that treat the subject from a fluid-mechanical
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point of view [29,30]. The reader is referred to a recent extensive survey [31] for
background information.

The goal of the present analysis is to present a general treatment of slowly
diverging flows in the WKBJ approximation. We wish to establish the relation-
ship between the local absolute/convective character of the instability and the
global properties of the entire flow. Rigorous criteria are given for the existence
of temporally growing resonances and for the value of the global-made fre-
quency. The entire study is restricted to media of infinite extent that are
evolving in one spatial dimension omly. The results are, however, ecqually
applicable to two-dimensional flows, provided the cross-stream coordinate is an
ciaenfunction direction as in shear layers, jets, and wakes.

The paper is organized as follows. In Section 2, we recall essential definitions
pertaining to local instability concepts in parallel flows, ic., homogencous
media. The presentation of the main ideas is very incomplete: we only discuss
aspects of the theory that are relevant to this investigation. More detailed
accounts are given clsewhere, for instance in [31]. The properties of global
modes are studied in Section 3. General concepts are introduced in Section 3.1,
and sccond-order systems are analyzed in Section 3.2, The main results are
summarized in three theorems and two coroliaries. Relying on previous work,
we briefly sketch how the analysis may be extended to systems of arbitrary order
in Section 3.3. In the conclusion we review the most important results and
compare them with related investigations of instabilities in specific spatiafly
developing flows. As will become apparent, the approach adopted in the core of
the study is very geometrical. An alternate derivation of Theorems 1 and 2,
based on energy-integral methods, is briefly outlined in an Appendix.

2. Instability concepts in homoegeneous media

Before proceeding to the case of spatially developing systems in Section 3, it is
essenfial to recall the main ideas underlying classical instability theory in
parallel flows, i.e., homogencous media. As demonstrated in the sequel, the
concept of causality will play a crucial role, as it allows a rigorous determination
of the direction of energy propagation for various spatial waves. Furthermore, in
both sections, one needs to use mappings in the complex plane extensively as
well as contour-deformation arguments. This section will introduce these tech-
nigques in the setting of parallel flows.

Following Bers [12], we only consider systems in one space dimension which
are governed by a nonlinear partial differential equation for a vector field
W(x,t), where x and ¢ denote the space and time coordinate respectively. The
system admits a vector i of control parameters and a basic state solution ¥,
When the system is forced by a given source 8(x, 1), the vector of ﬂuctuations
a,[;(x t; &) around W, satisfies the system of linear partial differential equations

a4 L= .
D[wt;}?,:m;u]aﬁ(x,t;@) = 8{x,1). (1)
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Let ¢k, ;i) be the Fourier transform of w(x,t; it) such that

— R 1 :‘ = (hx—w
w(x, 038 = WL-L‘ﬁ(k',w;#)ﬁ(k' Vdw dk, )

where &k and w are the wavenumber and frequency respectively, and F and L

are suitably chosen contours as discussed below. The function ¢ must then obey
the equation

DIk, w;ilg (kw3 2) = 8(k,w). (3)

When D[k, w; g]= 0, one obtains the dispersion relation between & and w. In
general both & and w are allowed to be complex, and one should determine the
subset of values of k& and o which acquire physical meaning.

It is important to bear in mind the subtle difference that exists between time
¢ and space coordinate x as a result of the causality assumption. Starting the
“experiment” at a given instant, say ¢ = (), breaks the symmetry 1 — — f, and the
causality condition stipulates that no response should be observed before £ = 0.
Thus, the dispersion relation D should have the property sketched in Figure 1.
Namely, for any path F in the complex k-plane connecting k,=—w to
k, =+ with £, bounded, there exists a corresponding path £ in the complex
w-plane, with similar characteristics to F, that lLies above all the zeros and
singularitics of D when & travels along F. In other words, a physically
acceptable dispersion relation should respect the following property:

w = max {w,| DLk, w; ] = 0} exists for &, finite.  (Property 1).

I3

£, max

The proof of the above statement follows from the fact that q’? is the Fourier
transform of ¢. For a causal source 8, the responsc is given by

i Sy = 1 S(k’w) SHAX —wi)
B(x,t:02) = oo f,.f,)D[k_,w;;z]‘ de dk. (4)

The source § is causal, and its Fourier transform §(k,w) should have no
singularities in the complex w-planc located above a path L that depends on F.
Since one needs ¢ =0 when ¢ <0, the dispersion relation should therefore
satisfy Property 1.

For convenience and clarity of presentation, the analysis and discussion to
follow considers scalar systems exclusively. However, the conclusions of this
study are not affected by this restriction and are believed to apply to a wide
class of spatially developing evolution systems.



Spatiafly Developing Flows 123

i

1 f(O

L A
e R
a0

e

Y
N
£
ENgY
e
£

v
TR
o
vl ey

(d)

Figure 1. Integration contours L aad £, temporal and spatial branches in complex & and o
planes. Temporal branch w(k), k on F, is denoted by £, . Spatial branches k¥ (w), k" (w), @ on L,
are denoted by L and L. (a), (b), (c), and (d) refer to different stages of the pinching process. In
(d) F is pinched by L} and L;.

2.1. Temporal stability theory

It is well established that temporal stability theory corresponds to the time
evolution of a given real wavenumber & over all space. For simplicity, we shall
assume in the rest of this section that there is at most one unstable temporal
branch w{k). According to Property I, temporal modes in the complex w-plane
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Figure 2. Temporal modes o,(k), k real, and spatial branches k€w), w real in k-plane: (a) stable
case; (b) neutrally stable case; (¢} convectively unstable case; {(d) absolutely unstable case.

arc bounded in the wdirection, and there is, at a particular real wavenumber
K x> 8 well-defined maximum growth rate o, .., with corresponding frequency
@, mae- THE system is then said to be stable if w, . <0, neutrally stable if
O max = U, and unstable if w, > 0. Different possible cases are displayed in
Figure 2 for sitnations in which no specific discrete symmetry prevails. As a
control parameter, say the Reynolds number or Rayleigh number, is increased,
the temporal instability characteristics may change as illustrated in the sequence
of sketches in Figure 2.

2.2. Spatial stability theory

In contrast to temporal stability theory, one may require w to be real and obtain
spatial branches k(@) in the complex k-plane which represent spatially amplify-
ing or decaying waves. Typical configurations have been sketched in the lower
part of Figure 2. Since there is no equivalent of Property 1 in the k-plane, the
sign of — &, (w) fails to provide any clue regarding the stable or unstable nature
of the flow. In fact, one does not know a priori the direction in which the energy
of a particular branch k(w) will “propagate.” One may understand, at an
intuitive level, the relationship between the character of the instability and the
shape of the spatial branches by following the sequence of sketches in the lower
half of Figure 2. When the system is stable [Figure 2(2)] there should be no
amplitied spatial waves. This implies that the branches k% {w) lying in the upper
half plane “propagate” to the right x > 0, whereas the branches &~ (w) lying in
the lower half plane “propagate” to the left x < 0. Neither branch can cross
from one side of the k,-axis to the other and remain there indefinitely as the
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frequency w is varied. A + and - label and corresponding “propagation”
directions can be assigned to the continuously deforming branches as the system
becomes neutrally stable {Figure 2(b)} and unstable [Figure 2(c)).

This continuity argument is, however, no longer tenable when two spatial
branches emanating from opposite sides collide as shown in Figure 2(d). In such
a case, spatial branches switch and the system undergoes a transition from
convective instability [Figure 2(c)] to absolute instability [Figure 2(d)l. The
following definitions may then be introduced. A flow is said to be stable if each
individual spatial branch k(w), w real, solely belongs to one side of the k -axis.
It is said to be convectively unstable when one of the spatial branches crosses
the k-axis. Finally, the flow becomes absolurely unstable when spatial branches
originating from distinct sides of the k,-axis collide. The collision point &, is a
saddle of w(k), and the corresponding absolute frequency w, is in general a
branch point of k(w). In the complex w-planc the transition between convective
and absolute instability is signaled by the fact that the absolute frequency w,
has crossed the w,-axis. The criterion for absolute instability is therefore that
w, ; be positive.

2.3. Signaling problem

A more rigorous proof of the above criterion follows from a study of the
signaling problem. In this case, Eqguation (3) is solved for a pointwise time-
harmonic source of real frequency w,. In the inverse Fourier transform (4), the
source term takes the form S(k, @)at1/(w ~ ), and the configuration of the
integration paths L and F is sketched in Figure 1. The temporal mode w(k)
maps F into F,, and the spatial branchess k{w) map L into L] and L.
According to Property |, when L is high enough, F can be made to coincide
with the k -axis without intersecting any of the spatial branches L} and L,
[Figure Ha)l In the range x <0 (x > 0), F is closed by a semicircle at infinity in
the lower (upper) half k-plane, and this procedure naturally selects the L and
L} branches pertaining to x <0 and x > {), respectively. When L is lowered
[Figure Kb),(c)l, F must be deformed to avoid crossing the spatial branches.
This is possible until two spatial branches that were initially on distinet sides of
the k,-axis pinch the contour F [Figure 1{(d)]. If pinching takes place before L
reaches the w,-axis, as in Figure 1(d), no + and — branches can be defined for
w = @, rcal. The system is then absolutely unstable. By comparing Figure Hb)
and (d), one obviously has the ineguality

wﬂ,i =< wi,max‘ (S)

The absolute growth rate is necessarily bounded from above by the maximum
temporal growth rate.

2.4, Impulise response

The physical implications of absolutc /convective instability concepts are more
readily accessible when one examines the impulse response, or Green's func-
tion, of a system that is subjected to a localized input in both space and time. As
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Figure 3, Impulse response in homogeneous media: (a) stable; (b} convectively unstable; (o)

absolutely unstable.

discussed in carlier reviews, for instance [9-12,29,31], the response takes the
form of a wave packet in the x-t plane (Figure 3). Along a given ray x /¢ =V,
the instability selects a frequency-wavenumber pair w*(}”), £¥(}7) given by the

group velocity

Skt ()] = V. 6)

The maximum growth rate o, .. is observed along the specific ray

de
l/l'llilx = ;j_k— ( kmax) k4
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which can be viewed as the characteristic velocity of the center of the wavepacket.
At the fixed source location, one detects instead the particular pair wg, kg
corresponding to the solution of (6) with V' = (. Thus, the maximum growth rate
@ max Dertains to the temporal evolution of the instability in a frame of
reference moving with the wavepacket, whereas the absolute growth rate w;
measures the growth or decay of the impulse response in 4 fixed reference
frame attached to the source. The three different impulse responses illustrated
in Figure 3(a),{(b),(c) correspond to stable, convectively unstable, and absolutely
unstable situations, respectively. It can be concluded that, in an absolutely
unstable medium, any transients will progressively overwhelm the response to
gxternal perturbations. In such cases, the signaling problem becomes meaning-
less.

3. Global maodes in infinite spatial domains

3. 1. General concepts

The goal of this section is to study the properties of infinitesimal linearized
disturbances in a medium that is of infinite extent and spatially developing in x.
In other words, in the class of problems under consideration, invariance with
respect to translations x — x +const no longer holds, but time invariance
t — ¢ +const persists. Thus, one seeks global-mode solutions with a temporal
behavior of the form ¢ ¢/, where w,. is an unknown complex global fre-
gquency. Global modes with a positive value of @, ; are of particular interest,
since they lead to a temporal instability of the entire spatially developing
system. The defermination of global modes typically involves solving an eigen-
value problem that must be cxamined on a case-by-case basis unless additional
assumptions are made. We recall that the main goal of our study is to relate
local and global instability properties. In order to make this connection possible,
it is necessary to assume that the length scale characterizing the spatial
inhomogeneities of the medium is much larger than a typical instability wave-
length. Under such conditions the local instability properties introduced in the
previous section arc unambiguously defined at cach station on a locally parallel
basis. In particular, one may calculate local quantities o, (x), 0 {(x), ctc., as if
the system were locally homogencous in x. Thus, in a given spatially evolving
system, distinct regions of local stability and focal instability may coexist.
Furthermore, within the unstable region, one differentiates between locally
convectively unstable and locally absolutely unstable domains. The local nature
of the instability dictates the behavior of the short-time response to an impulse
within a given region. Nonetheless, it should be emphasized that local proper-
ties give no insight into the long-time impulse response of the entire spatially
varying system.

The parallel-flow considerations outlined in Section 2 have demonstrated the
importance of causality in the correct assignment of spatial branches. In the
same spirit, one must only pay attention to global-mode solutions which are
the final outcome of an “experiment” initiated, say, at t = 0. T'o understand the
role played by causality in the choice of boundary conditions at x = + e, we very
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temporarily restrict the discussion to infinite systems that possess only a finite
region of local instability in x, the medium being tocaily stable at +o. In such
circumstances, causality requires that no fluctuation energy propagatc from
infinity towards the bulk, and, as a result, one must impose the condition that
the perturbation field vanishes at x = +c. The assumption of local stability in
the neighborhood of x = t o is, however, unduly restrictive. The above argu-
ment may be extended to situations where the medium has a finite region of
absolute instability, allowing for possible convective instability in the vicinity of
x = 4o, In this more general configuration, one can still determine the “propa-
gation” direction of all spatial waves in the convectively unstable domains near
infinity, provided w. >0, by making use of the analysis of Section 2. We
choose to focus on a single pair of spatial branches that exhibit switching in the
bulk of the medium, as detailed in the next sections. For a given value of o, the
spatial branch selected near x = += (respectively, ¥ = —») is then taken to be
causal and therefore subdominant ncar x = + (respectively, x = —w). In the
present context, “subdominant” refers to the solution that is exponentially small
with respect to the other. Causality considerations then lead to a singular
boundaty-value problem on —w< x <+, and in general global-mode eigen-
functions will be obtained for only discrete complex values of wg;. The condition
that fixes the possible values of w, must be obtained by connecting the
subdominant branches at -+ and at —oo in the bulk of the medium. The key
phenomenon is therefore the manner in which branch switching takes place
between a left-moving wave at —o and a right-moving wave at +o. These
waves will be spatially attenuated if w,; , > 0 and the regions near both infinities
are locally stable. They will only be subdominant if these same regions are
convectively unstabie.

There is a very close correspondence between the global modes of the
present study and bound states in potential-well problems. It is well established
in the literature on quantum mechanics [32--37] and from earlier work by Stokes
that the correct way to treat branch switching is to immerse the physical
problem into the complex x-plane. A naive analysis restricted to real x will
necessarily miss contamination by exponentially small terms that may, in some
region, become dominant. Branch switching will, in general, occur at some
points in the complex x-plane, and this phenomenon will make itself felt
everywhere, particularly on the real x-axis.

3.2, Second-order systems

The simplest possible “parallel flow” displaying a saddle point in the complex
k-plane involves a dispersion relation that is linear in e« and quadratic in &k of
the form

Dlk,wyp] = iw — ak? + ipk + g. {7)

In physical space, the dispersion relation (7) is associated with the linear
differential operator

g ]W_a a? 9

L4 d
[)[—15}“,1"{}?,@ ;?—t'f'()'g}“i“{“p::};%q. (8)
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In the spatially evolving case, the coefficients are taken to be functions of the
spatial coordinate x, and one must then solve a generalized linecar Ginzburg-
Landau equation

b = o (), + p(x)d, + q(x)d. (9)

Local instability properties are readily obtained by inspection. The maximum
temporal growth rate is

2
Py
wi,nmx = Qr + 4_0_ ) (]0)

-

and the absolute wavenumber and frequency are given by

; 2
i . P
kuﬁ%, wﬂmt(q-%). (]])
If one sets

o = 2', {(12)

one must necessarily have

e, < 0, (13)

in order to satisfy causality. This condition corresponds to the existence of a
high-wavenumber cutoff in the temporal stability problem. It is assumed that
{13) holds in the entire complex x-plane and that w,, is an analytic function of
x everywhere. We shall not attempt to relax this assumption here.

According to the definition of global modes given previously, time-harmonic
solutions are sought with variations of the form ¢{x, 1) = ¢(x;wy)e ¢, w,.
complex. Furthermore, these solutions must become subdominant as x goes to
+ and ~oo. The governing equation for the eigenfunction ¢(x; @) is

—iwgh = a{x)yp, .+ plxYp, + q(x)e, {(14)

and, through the change of function

F

#0x) = (o] -3 [ 20 @), (19)

Equation (14) reduces to the compact form

b+ Q(x)d* = 0, (16)

with

O(x) E"(;(l;)"(iw(;“"q_é%)“%(gt)i- (17
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Thus, if one defings the shifted absolute frequency
B x) = wy — Ge(x) = wy — a(ky) ,, (18)
the coefficient Q(x) appearing in (16} can simply be written as

O(x) = zm (19)

(3}

It is convenient to explicitly display the WKB parameter ¢ defined as the
ratio between a typical instability wavelength and the length scale associated
with spatial inhomogencitics of the system, Let X =ex be the corresponding
slow-scale variable. Equation (16) may then be recast in the form

e’y + Q(X )" = 0, (20)
with
- we ~ @y X)
Q(X) = 203y (21)
and
oy X) = 0 X) ~ &g X) = wo( X) EU(X)[k(}X]X' (22)

The cigenvalue problem for w; and $* specified by (20) and the boundary
conditions at X = + also arises in the motion of a quantum particle in a
potential well, According to standard WKBI approximation theory, the two
independent solutions of (20) admit, in the limit € — 0, asymptotic expansions of
Pokrovskii and Khalatnikov [33], Wasow [34], Hille [35,36] and Bender and
Orszag [37), we introduce the mapping from the complex X-plane to the
complex Z-plane defined by

z = = [“JO(X) ax. (23)

As seen by inspection of (23), the asymptotic solutions are multiple-valued, and
branch cuts of Z(X) have to be chosen at the branch points associated with the
zeros of Q{X). Since ({X) is analytic, the exact solutions of (20) are also
analytic. The branch-point singularitics appearing in the approximate solutions
are therefore an artifact of the WKBJ method. As a conseguence, the expansion
of a given solution must change as X circles around a zero of Q(X). This
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peculiar feature of WKBJ approximation schemes is commonly referred to as
the Stokes phenomenon. It must be analyzed in detail before proceceding with
the calculation of the cigenvalucs and eigenfunctions.

The set of level curves Im Z = const are called indicatrices. The topology of
the network of indicatrices plays a crucial role in the proper derivation of global
mode characteristics. A single indicatrix passes through regdar points of Q(X),
whereas several indicatrices join at furning points, ie., zeros of Q{X). The
indicatrices arc uniquely defined, but the Iabel of each curve depends on the
choice of branch cut and reference point in the integral (23). If X, is a
particular turning point, the Stokes lines emerging from X are the particular
indicatrices uniquely defined by

ImZ = %f O(X) dX = 0. (24)

The terminology varies from author to author. We have adopted here the
definition employed by Bender and Orszag [37]. Across a Stokes line, transcen-
dentally small terms may become exponentially large and the leading-order
asymptotic cxpansion of a given solution may change. The set of Stokes lines
define open domains D; in the complex X-plane. If B, is an integer taking one
of the values +1 or — 1, the two independent solutions in D; will be asymptotic
to

1 ,,8}' X
[o(x)] exp{l?fxu 2x) dX}

and
1 exp{ SRce) ch}

respectively. If the first expression is exponentially larger than the second
expression, it is said to be the dominant WKBIJ approximation in this sector.
The other expression is then the subdominant WKBI approximation. The
following rules are applicable [37})

. I a solution is asymptotic, in some domain D, to the subdominant
approximation, then the same approximation remains vaklid in all the neighbor-
ing domains (i.e., those which share with 1), a common boundary not reducible
to a single point).

2. 1f a solution is asymptotic, in some domain D, to the dominant approxi-
mation, nothing can be said regarding the approximation in neighboring do-
mains.

This fundamental property has strong implications for the global-mode
problem. Since we are interested in subdominant solutions at X, = +«, the
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negative X -axis and the positive X -axis must belong to domains £); that do not
share a common boundary. The following lemma is then a direct consequence of
the above considerations.

Levma 10 To avoid exponentially large terms as 1 X,| o, the deformed
contours of the X, -axis must cross at least two Stokes lines that are connected at
one or several turning points.

In the ensuing development we shall need to know the sign of Imf{w, —
Do X))/ w, (X))} as X travels along a given horizontal path M in the complex
X-plane. We shall assume that oy, (X) <0 and that @y, =
Max y .. ,1dy (X} exists, The results are summarized in the next lemma.

Lemva 20 If we ;> @ e the branch cut of Z'(X)=0/elaw, —
@ XN/ @, XN may be chosen so that Ym Z'(X) remains positive on M.

We shall require the branch cut not to cross M. Under thesc conditions,
along any straight-line M parallel to X, the function

— 1 wg — @ X)
ImZ(X} = Im EI]JZW dx

increases monotonically as X travels along M from ~o to +oo, Thus M crosses
indicatrices with the same label only once. There are, in particular, no contours
M crossing two or more connected Stokes lines. It can be concluded from
Lemma 2 that, when w ;> @, ..., the real X, -axis crosses at most one Stokes
line. Application of Lemma 1 then excludes the existence of global modes, and
the following theorem holds.

TheorEM 1: A systerm will have no global modes with a growth rate W ;
greater than oy ;... Thus, one must have

O i < W) - (25)

This result establishes a rclationship between local and global instability
properties. In the WKBI approximation, &, ,,, differs from @, by an
order-e¢ correction term [see Equation (22)). If o, denotes the leading-order
approximation, in the WKBJ sense, of the global-mode frequency,

0 = @, + O(e), (26)

one obtains the following important corollary:
Coroviary 1t The leading-order approximation w, to the global-mode fre-

quency satisfies the inequality

@, ; = w[],imux + ()(6) (27)

£
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As a resulf, a system nowhere absolutely unstable (@ ;... <) cannot sustain
global modes with an O(1) temporal growth rate.

Note that, on account of the Ole) difference between @y ;0 AN @0 ;e
weakly growing global modes cannot be excluded in purely convectively unstable
systems when wg ;.. 18 very small. It is also important to notice that absolute
instability is only a necessary condition for strong global instability. Examples
exist [1-3] where the medium is absolutely unstable in a finite domain, but
nonetheless globally stable.

It is possible to be considerably more specific if additional assumptions are
made regarding the mapping @,(X) from the X-plane to the w-plane. In
general @ (X) is single-valued, whereas the imverse map @ ' is multiple-val-
ued. Anticipating needs in the derivations that will follow, we assume that the
complex w-plane is composed of al least two Riemann sheets with a branch
point in common, Correspondingly, level contours of @, {X) admit a saddle
point in the complex X-planc. The reader will have immediately drawn the
analogy beiween the present assumptions and those commonly made in the
presentation of absolute /convective instability concepts for parallel flows. Here
the X-plane plays, in some sense, the role of the k-plane in Section 2. Indeed,
the arguments to be used will share some features with those applied in
specifying the integration path in the k-plane. To be more specific, the follow-
ing assumptions are made: :

Assumption 1. The map @ (X ) Is single-valued and holomorphic in a strip
centered on the real X-axis, and the first singular point is a saddle point X such
that

dédg

=y (X)) = 0.

The middle portion of the X, -axis is on a hill of the saddle, i.c., its “altitude”
expressed in terms of @y ; is higher than & ;= Im @, ( X )

Assumption 2. &y (X,) < 0.

The latter restriction is the analogue of the high-wavenumber cutoff require-
ment o, ;<0 adopted in Section 2. It might be possible to relax this assump-
tion on a casc-by-case basis, but we shall not attempt to do so here. We are now
in a position to state a second important theorem regarding the characteristics
of global modes.

Tueorem 2. Under Assumptions 1 and 2, there are no global-mode solutions
with a temporal growth rate w, ; greater than & . In other words

e = ﬂj.s-,s- (28)

Proof of Theorem 2: The derivation of Theorem 2 relies on contour-deforma-
tion arguments which bear a strong similarity with those of Section 2. Let M be
a horizontal path in the complex X-plane, and M its image in the complex
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w-planc under the map @ (X) (see Figure 4). When M coincides with the
X,-axis, its image M is necessarily bounded in the w direction as shown in
Figure 4(a). This results from the assumption made in Lemma 2 regarding the
existence of @y ; ., = Max y 5 {@y (X} Conversely, if L is a straight horizon-
tal line in the w-plane, its image in the complex X-plane will be composed of
several branches L' If L is choscn high enough so as not to cross M, the
contour M will not cross any of the branches 1. j" cither [Figurc 4{a}]. It may be
the casc that, for some L, the branches L,-‘l are all located on one side of M.

L4 o ani

> —AS T Yo, imox \J

/? Wy w,_ Xy
My /] (a) ///f“’zz:::IErL4

L Awi \J\xi

-4
% Wq, imax \—/Lz

-
//’mE) . M .
/ r

/ - (b)

, -1
L i y sz

N -

= M _ R
//g;?) w, ;}{‘W/—*“\\\\ X,
/ / L

Mo (c)
ﬂxi -
| Wi N L‘Z
L s M Xg
2 T

> / = Wy / PR 4

M., (d) L,

Figure 4. Contours M and I. in complex X and w-planes. The image of M under the map aylX)
is M,,. The image of L under the inverse map w; ! has several branches Lj_‘, F=1,2,3,.... (&), @),
{c), and {d) refer to different stages of the pinching process. In {d} M is pinched by L ©oand Ly,
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However, on account of Assumption 1, branches are bound to appear on the
other side of M as soon as L is sufficiently close to the saddle point )f’s. For
simplicity, we assume that the two branches L, ' and £.;' which will pinch at
the saddle )f_s. are already present. According to Assumption 2, the locations of
L, " and L;" are such that

max{Im X|X € L; '} < min{lm X| X e ;). (29)

The initial positions of L and M and their images are sketched in Figure 4(a)
with L above the maximum @, ;... We recall that, according to Lemma 2 and
its conscquences, the function Z{X) is montonic on M when w,; ;> ;-
Thus M can only cross one Stokes line. We conclude that the global-mode
frequency docs not lie on a contour L of the type shown in Figure 4(a). As L
moves downward, it will eventually reach a point where o ;= @y ., a8
sketched in Figure 4(b). At this stage, only one branch, say L', will touch the
contour M. To avoid contact, one only needs to translate M upward or
downward by a small amount. As Lemmas 1 and 2 remain valid for any path M
parallel to the X,-axis, the previous reasoning stil holds and L. does not include
any possible global-mode frequencies. One may continue to lower L and
translate M 50 as to avoid contact with Ly until the saddle point X, is
reached [Figure 4(c),(d)]. When M is pinched, it cannot avoid the contours Lj"l
any longer and a cusp develops at @, on L. Thus, until L reaches the frequency
a, of the “closest” saddle point, it is pointless to seek a global-mode frequency
on L. This proves the thecorem.

Theorem 2 also establishes a relationship between local and global instability
propertics that can be immediately stated in the following corollary.

Cororrary 2. Under Assumptions 1 and 2, the leading-order approximation
to the global-mode frequency w,, satisfies the inequality
w,; <w.;+0(e), {30)

where w = w( X,) is the complex absolute frequency at the saddle point X such
that (dw, /dX)|x = 0.

Remarks:

1. It is assumed in Figure 4 that )Z,.‘,- is positive, but the same reasoning
holds when X, ..i 18 negative.

2. Assumption 2 is essential to the argument of the proof. If it is relaxed,
pinching may take place sideways as illustrated in Figure 5. Parts of M can
always be deformed so as to avoid approaching branches. Nevertheless, once M
is no longer a straight horizontal line, it is not legitimate to invoke Lemma 2 in
order to prove the monotonicity of Z.

3. According to Figure 4, it is clear that one necessarily has @ _; < 0y ;
and Theorem 2 and Corollary 2 provide an upper bound for the temporal
growth rate of global modes that is much sharper than w,,,.. &iven by
Theorem 1 and Corollary 1.
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Figure 5. Sketch ilustraling pathological case of “sideways pinchisg.” This situation is excluded.

A definite statement can now be made regarding the existence of global
modes and the value of the dominant global frequency.

TueoreM 3. Under Assumptions | and 2, the temporal growth rate of global
modes is given to leading order in the WKBJI approximation by the upper bound
w, ;. An estimate of the corresponding complex global frequency is w ..

Proof of Theorem 3. Let us assume that the expansion of o is of the form
we = &, + edr, + Ofe?), (31)

where @, = @,y(X,), and demonstrate that one therchy satisfies all the con-

straints of the cigenvalue problem. Since X[ is a saddle point, the function
@ X) admits a Taylor series expansion

- . Wy v ~ .
ay(X) = @b, + X (x - £+ o(x-X), (32)

with @,y = (1), We then define an inner region of size €'/? around the
turning point X and introduce the corresponding inner variable z = ¢~ 2 x —
X ). The inner problem can be written in the form

4

’ s
s =2y g g (1) |gF = 0, (33)
Pk

where a =@y /) =0(1) and g (2} is an O(1) holomorphic function. The
configuration of Stokes lines in the vicinity of X’s is sketched in Figure 6. We
recall that, in order to satisfy the boundary conditions, subdominant solutions
are required in the outer sectors containing X, = +. The role of the turning-
point inner region is to allow “smooth” switching from one subdominant
solution in one sector to another subdominant solution in the other sector.
Following standard methods, one may identify the leading-order terms in (33)
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Figure 6. Structure of inner region around saddle point X, including topology of surrounding
Stokes Hnes (SL. = Stokes lines; 8§ = subdominant),

with the parabolic cylinder equation, Matching of the inner solutions with the
outer subdominant solutions reguires that @, take the discrete values

- 12
6, = (2n+ -1)(5‘2’:%3’-‘-";) , (34)

n being any positive or zero integer and the branch cut of the square root being
taken on the negative real axis. According to Equation (13) and Assumption 2,
arg w,, and arg @,, , both belong to the same range |- =,0[, and one immedi-
ately concludes that &, <0. Thus, under Assumptions 1 and 2, there is a
discrete infinity of global modes, and the most unstable has a complex fre-
guency given by @, to dominant order in the WKBJ approximation. Finally, we
note that @, differs from o, by an O(e) quantity [see Eq. (22)], and we can state
that the saddle-point frequency o, = wy{ X} provides the dominant-order esti-
mate of the global frequency. This completes the proof of the theorem.

Combining (31) and {34), one obtains the following discrete spectrum of
global frequencies:

- en+l oL
wy ~ Wy by (Goxxwpe)'”. (35}
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It is somewhat remarkable that the global-mode characteristics admit WKBJ
approximations involving only local instability properties of the spatially devel-
oping medium around the saddle point X, where dw, /dX =0,

3.3. Extension to nth-order systems

Theorems 1, 2, and 3 and their corollaries have been derived in the context of
linear second-order differential operators. One still needs to establish whether
the results remain valid for arbitrary differential systems of the form

Cd 4
D ﬁtﬁ,fﬁ?;u(x} r{x,t) =0, (36)

where D is a linear differential operator defining, when u is made constant, a
dispersion relation at the relevant location x. The general idea consists in
studying a class of systems in which branch switching implicates only a single
pair of left-moving and right-moving waves, all other branches playing no role
whatsoever.

As before, we seek global-mode solutions of the form (x, 1) =
P, m)e ™' with ¢(x, w.) satisfying the linear differential equation

! 4
D] =i g n(0)](x,wg) = 0. (37)

The general properties of solutions of (37) in the WKBIJ Hmit have been studied
in great detail by Wasow [34], and we shall repeatedly appeal to the results of
that study. The differential operator D is restricted to be a polynomial in
—1id/0x. Following Wasow [34], the system (37) is recast as a system of
first-order equations

Yo = Mlag,u()}y, (38)

for a vector y of dimension #, M being a » X n matrix. Introducing, as before,
the slow variable X = ex, (38) is writien as

eyy = M X]y, {39

the dependence of M on @, remaining implicit,

The focal spatial branches & (X) at cach location X are seen to be simply
given by the eigenvalues A; = ik, of the matrix M{X). As mentioned previously,
only a single pair of cigenvalues, say (A, ,), is assumed to experience branch
switching in the complex X-plane. In such a situation, A, and A, pertain to
left-moving waves at X, = — and to right-moving waves at X, = +oo. Further-
more, the coefficients of M{X) are taken to be holomorphic in some subdo-
main of the X-plane that includes the X -axis.

According to Wasow [34], the general equation (39) for the n-dimensional
vector field y is then fully equivalent to a second-order system. Stokes lines are
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now defined by

Rc{éfX{A,(X)—A?_(X)}dX} -0, (40)
Xl\
or equivalently by

lm{éfX{kl(X)—kz(X)}dX} = 0. (41)

For Stokes lines emerging from a turning point X, onc chooses X = X, and
by definition one has A (X)) = A,(X,), or equivalently k(X )=k, (X). Stokes
lines delincate subdomains D), in the complex X-plane. In each scctor D),
independent solutions of (39) are asymptotic to a particular WKBJ approgima-
tion of wavenumber k&, f=1,2. As a Stokes line is crossed, the solution may
shift to another WKBJ approximation as expected from the Stokes phe-
nomenon. The inner region surrounding the turning point determines the
manner in which different WKBI approximations need to be matched to obtain
a global mode. It has been proven by Wasow [34] that the structure of a given
turning peoint X, only affects the WKBI approximations associated with the
colliding cigenvalues A, and A,. In a sense, the spirit of the method very much
evokes the center-manifold theory of nonlinear dynamical systems, as described
for instance in Guckenheimer and Holmes [38]. The reader is referred to
Wasow's work for details.

All the main results of Section 3.2 regarding second-order differential opera-
tors mercly need to be transposed. Since crossing a Stokes line leads to a
change from a dominant to a subdominant branch or vice versa, Lemma 1 holds:
any deformed contour of the X-axis must cross at least two Stokes lines.
Similarly, Lemma 2 still stands in a slightly altered torm. If @, ;> @ ;.. the
quantity (1/e)Im{k (X} — £,(X)} keeps the same sign along a straight line M
parallel to the X -axis. Following the same arguments as in Section 3.2,
Im{(1/e) 1k (X)— k,{X)]dX} increases or decreases monotonically as X trav-
els along M, and only one Stokes line is crossed by M. In order to derive
Theorem 1 and Corollary 1, we have to exclude pinching of the kind sketched in
Figure 5. Morc specifically, when o, ;> ay;.., we must have

merif{lm[kz(X)_kl(X)]} > 0. (42)

Under these conditions, Corollary | remains valid: a system nowhere absolutely
unstable (@ ;. <0) cannot sustain global modes with an O(1) temporal
growth rate w, ;> 0.

Turning our attention to the generalization of Theorem 2 and Corollary 2, we
first need to find a straight horizontal path M in the complex X-plane such that
the inequality (13), namely w,, , <0, is satisfied. The absolute frequency func-
tion wy(X) is then analytically continued into the complex X-plane as sketched
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Figure 7. Sketch of wy, ; = const curves in complex X-plane, in the vicinity of the saddle point X

in Figure 7. As a straight horizontal line L is lowered in the complex w-plane
from @, , = @ ; maxs the path M must be displaced to avoid pinching by L,
and L' (Figure 4). On such a contour M, Lemma 2 is satisficd and application
of Lemma 1T allows to rule out any global-mode frequency on L. This reasoning
first fails when M is pinched by L, ' and L, !, which takes place precisely as [
rcaches the frequency w, of the saddle point. Thus the temporal growth ratc of
the global mode is necessarily lower than o, as stated in Theorem 2 and
Corollary 2. Finally, the arguments used in the proof of Theorem 3 only involve
a local analysis around the turning point X,. The structure of the inner region
stays the same, independently of what may be the topology of the Stokes lines
far away from X . The leading-order estimate of the global-mode frequency is
therefore given by e, as long as Assumptions 1 and 2 are valid.

Remuarks: No general results are available when the dispersion relation
involves transcendental functions and is therefore not expressible in terms of a
polynomial of finite degree n. Nevertheless, it is very likely that the structure of
the problem remains the same, and Theorems 1, 2, and 3 still apply. Extension
of the above formulation to nonlinear systems is nontrivial. However, it is
certainly possible to perform a weakly nonlinear analysis in the vicinify of the
bifurcation to a global mode. This will be the object of future work. Preliminary
results have been reported in [5].

4. Cenclusions

The relationship between local and global instability propertics has been firmly
established in media that are slowly evolving in one spatial dimension X. Under
very general conditions, we have shown (Theorem 1 and Corollary 1) that the
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leading-order approximation e, , to the temporal growth rate of global modes is
bounded from above by the maxnmum absolute growth rate wg ;. ver the
domain, Consequently, a system nowhere absolutely unstable cannot sustain
global modcs with an O(1) temporal growth rate. Under more restrictive
conditions, ie., the existence of a saddle point X, of @,(X) in the complex
X-plane whcu, (dcuﬂ/dX)lx = 0 with @,y (X} <0, we have obtained a much
sharper upper bound w, , = wg; {X,) for the global-mode growth rate (Theorem
2 and Corollary 2). Fmally, it hds been proven (Theorem 3) that this upper
bound is actually reached: w_, is indeed a leading-order estimate of the growth
l‘d{L of the most unstable giobdl mode.

Thus, given an explicit dispersion relation w(k; X), the complex frequency of
the dominant global mode is given, to leading-order in the WKBI approxima-
tion, by

Wy = “’u( X.\‘): (43)

where X, is the closest saddle point of the absolute frequency w(X) in the
complex X-plane such that

de
I (X)) = 0. (44)
Equivalently, the dominant global mode frequency w, is given by
w, = wlk;X,), (45)
where the complex pair (k,, X,) satisfies
dw
(}A(ks!X) = ]X(k\aX) (46)

Several spatially inhomogeneous unstable flows have previously been studied
within the WKBIJ framework. Examples include instabilities in the flow between
concentric spheres [39], in Poiscuille flow within a curved pipe [40], and in
Saffman-Taylor fingers [41]. In all these investigations the role of the absolute
frequency wo{ X) was not explicitly brought out: the presence of an additional
reflection symmetry x - — x at the most unstable location led to the identity
Op i max = O e Where @ is the maximum local temporal growth rate over
alt real X and over all real k. As a result the pocket of local instability near
threshold in this class of flows coincides with the region of local absolute
instability. Nonetheless, Theorems 2 and 3 and their corollarics remain valid,
and they lead to the correct value of the most unstable global-mode frequency.
A related “mode conversion™ formulation has been developed by Fuchs et al.
[42] to describe the evolution of instability waves in 4 weakly inhomogencous
plasma.

The criterion {43)-(46) has heen applied to the determination of the pre-
ferred mode Strouhal number in two-dimensional jets by Monkewitz et al. [4].



142 J.-M. Chomagz, P. Huerre, and L. G. Redekopp

The local mstability properties of the measured mean velocity profiles along the
jet axis were calculated to obtain an estimate of the saddle-point location X
The predicted Strouvhal number was found to be 0,225, which should bc
compared with the experimental value 0.25.

The formalism that has been presented herce is not restricted to systems in
one space dimension. The cross-stream eigenfunctions can be incorporated in a
systematic manner, starting from the fundamental equations of fluid motion
linearized around a slowly diverging basic flow [28]. The turning-point structure
remains the same, and one recovers the frequency selection criterion (35).

Appendix

An alternate derivation of Theorems 1 and 2 follows from integral considera-
tions, Let us write the second-order system (20) in the form

W byx T2|wg— @g( X)) = 0, {(AD)
and consider a subclass of systems where w,, is a complex constant indepen-
({ent of X. Since ¢ must vanish exponentially fast at infinity, the integral

t7$d dX is bounded (an overbar denotes the complex conjugate). Multiplying

(Al) by ¢ and integrating over space, one obtains, after a single integration by
parts,

wof TloCOPax = [ a0 a0 f ax + 9| INESIRCS
(A2)

Taking the imaginary part of {A2) leads to

w(;.ifum |‘!’(X)l dX = f “’n :(X)H’(X)I dX"L kk : [y;.:ld’x(x)lz dx.

(A3)
The following inequality also holds:
doe 2 - +en 2
f__ w(ll(X”(;b(X)l dX = wU,imax[ I(i)(X); dx. (A4)
Since, according to (13), w;, ; <0, we deduce from (A3) and (A4) that
+ o ) . +on 2
wiif 1O AX < Gy | [$(X)[ aX, (AS)
or
w(;.i = ﬁa{],fmax’ (Aé)

which proves Theorem 1.
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In order to prove Theorem 2, we simply need to extend (Al) to the complex
X-plane. The function @,(X) is analytically continued, and the previous reason-
ing holds on a straight horizontal path M such that X = X, which is obtained
by translating the X -axis in the vertical direction. The result (A6} then remains
valid on M, with @g ;. being the maximum of @,; on M. In particular, if
@,{ X) admits a saddle point at X, one has

W S @, (AT)

where @, ; = w, (X). This proves Theorem 2.

Acknowledgments

We have benefited from many stimulating discussions with P. A. Monkewitz.
This work was supported by the Air Force Office of Scientific Research under
Grant F49620-85-C-0080.

References

1. 1. M. Cromaz, P. Huerre, and L. G. REpekorr, Wave sclection mechanisms in open flows,
Bull, Amier. Phys. Soc. 31:1696 (1987).

2. 1. M., Cnomaz, P. Huerng, and L. G. Repexore, Models of hydrodynamic resenances in
separated shear flows, in Proceedings of the Symposium on Turbulent Shear Flows, 6th,
Toulouse, 1987, pp. 3.2-1-6.

3.} M. Crowsiaz, P. Husree, and L. G. Renekore, Bifurcation to local and global modes in
spatially-developing {lows, Phys. Rev. Leit. 60:25-28 (1988).

4. P. A, Mownkowitz, P Huerre, and J. M. Caomaz, Preferred modes in jets and global
instabitities, Bull. Amer, Phys, Sec. 332273 (1988).

5. I M. Cromaz, P. Houereg, and L. . Repexore, Effect of nonlinearity and forcing on global
modes, 1n Proceedings of the Conference on New Trends in Nownfinear Dynamical and
Pattern-forming Phenomena (P. Coullet and P. Huerre, Eds.), NATOQ ASI Serics B: Physics,
237 (1990}

6. W. Kocw, Local instability characteristics and frequency determination of self-excited wake
flows, J. Sound Vibration 99:53-58 (1985).

7. R. T. PwrerenumserT, lLocal and global baroclinic instability of zonally varving flow,

J. Atmospheric Sci. 41:2141-2162 (1984).
8. Y. Bar-Spver and L. O, Merking, Local instabilities of weakly non-parallel large scale flows:

WKB analysis, Geophys. Astrophys. Fluid Dynamics 41:233-286 (1988).

9. P, A, Srurrock, Amplifying and evanescent waves, convective and nonconvective instabilities,
in Plasma Physics (1, E. Drummond, Ed.), McGraw-Hilf, 1961, pp. 124-142.

10. R. 1. Bruoos, Electron-Stream Interaction with Plaseias, MET Press, 1964,

11, E. M. Lwrsirz and L. P. Prrasvsku, Physical Kinetics, Pergamon, 1981, Chapter 6.

12. A. Bers, Space-time evelution of plasma instabilitics—absolute and convective, in Handbook of
Plasma Physics (M. N. Rosenbluth and R. Z, Sagdeev, Eds.), North-Holland, 1983, pp.
1:451-1:517.

13. . G. Criguton and P. Huerrr, Model Problems for the Generation of Superdirective
Acoustic fields by Wavepackets in Shear Layers, AIAA Paper 84-2295, 1984,

4. B, Rockwens and E. Navbascuer, Self-sustained oscillations of impinging free-shear layers,
Annual Rev, Fhuid Mech. 11:67-94 (1979).

15. P. Huerre and P, A. Monkewitz, Absolute and convective instabilities in free shear layers,
F. Fluid Mech. 15%:151-168 (1985).

l6. T. F. Baisa, Three-dimensional wavepackets and instability waves in free shear layers, J. Fluid
Mech. 205:77-97 (1989),

17. M. Gaster, A theoretical model of a wavepacket in the boundary layer on a flat plate, Proc.
Roy, Soc. London Ser. A 347:271-289 (1975).



144

18.

19,

20.

27.

28

29.

30.

31

J.-M. Chomaz, P. Huerre, and L. G. Redekopp

C. M. Ho and P, Huerre, Perturbed free shear layers, Annual Rev, Fluid Mech. 16:365-424
{1984).

P. A MonkewiTz, The absolute and convective nature of instability in two-dimensional wakes
at low Reynolds numbers, Phys, Flids 31:999- 1006 (1988).

G. 8. Trianrarvirou, M. S, Triantarviiou, and C. Caryssostomiors, On the formation of
vartex street behind stationary cylinders, J. Fluid Mech. 170:461-477 (1986).

. K. Hamnsmann and H, Onrree, Numericad simulation of the absolutely and convectively

unstable wake, J. Fluid Mech, 199:55-88 (1989}

- X Yawna and A, Zests, Absolute and convective instability of a cylinder wake, Phys. Fluids A

1:689-696 (1989),

- M. Provansar, C. Maris and L. Bover, Bénard—von Kérmdn instability: Transieat and

forced répimes, J. Fluid Mech. 182:1-22 (1987).

- KU R, Sreenivasan, P Steykowskl, and D, 1 Ouser, Hopl bifurcation, Landau equation

and vortex shedding behind circular cylinders, in Proceedings of the Forum on Unsteady
Flow Separation (K. N. Ghia, Ed), Vol. 52, ASME, 1987.

- P A Monkewrrz and K. D Sonn, Absolute instability in hot jets, 4744 J. 26:911-916 (198%).
. PoA Monkswrrz, D0 W, Brooerr, B. Barsikow, and B. Hioman, Self-excited oscillations and

mixing in a heated round jet, J. Fludd Mech. 213:611-639 (1990).

K. R. Suennivasan, 8. Racru, and D. KyLe, Absolate instability in variable density round jets,
Exp. in Fluids 7:309-317 {1989},

P. A, Monkrwitz, P. Husree, and . M. Cuomaz, Preferred modes in two-dimensional jets, in
preparation.

P. Huerrg, Spatio-temporad instabilitics in closed and open flows, in [nstabilitics and Nonequi-
Ebrium Structures (E. Tirapegui and 1. Viltaroel, Eds.), Reidel, 1987, pp. 141-177.

P. A. Monkewrtz, The role of absolute and convective instabitity in predicting the behavior of
Huid systems, European J. Mech. B / Fluids 9:395-413 (1990).

P. Hupsre and P. A, Monkewirz, Local and global instabilities in spatindly-developing flows,
Annual Rev. Fluid Mech, 22:473-537 (1990).

. B G Trrsumarsh, Eigenfunction Expansions Associated with Second Ovrder Differential Equa-

tions, Parts 1, I, Oxford U.P., 1946,

. V. L. Poxrovskr and 1. M. Kuaratnkav, On the problem of above-barrier reflection of high

energy particles, Sovief Phys. JETP 13:1207-1210 (1961).

- W Wasow, Asymptoric Expansions for Ordinary Differential Equations, Wiley, 1965,

- B Hiwg, Lectures on Ordinary Differential Equations, Addison-Wesley, 1960,

- E. Hiier, Ordinary Differential Equations in the Complex Domain, Wiley, 1976,

. Co M. Benper and S, AL Orszaa, Advanced Mathematical Methods for Scientisis and Enginecrs,

McGraw-Hill, 1978,

- L Guexennemer and P, F HoLses, Nonlinear Oscillations, Dynamical Systems, and Bifurca-

tions of Vector Fields, Springer-Vertag, 1983.

39, AL M. Sowarn and C. A. Jones, The linear stability of the flow in the narrow gap between two

40,

41.

42,

concentric rotating spheres, Quars, J. Mech. Appl. Math. 36:19-42 (1983).

D. PapacrorcHOU, Stability of the unsteady viscous flow in a curved pipe, J. Fluid Mech.
182:209-233 (1987),

D. Brwsivon, P. Prict, and B, 1, Suramaan, Dynamics of curved fronts and pattern reflection,
J. Physique 48:2081-2082 (1987),

V. Fucns, K, Ko, and A, Bers, Theory of mode conversion in weakly inhomogeneous plasma,
Phys. Fluids 24:1251-1261 (1981).

UntversITy OF SoutHiErN CALIFORNIA

(Received September 27, 1989)



