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Two-dimensional (2D) flows can be controlled efficiently using spanwise “waviness,”
i.e., a control (e.g., wall blowing and suction or wall deformation) that is periodic in the
spanwise direction. This study tackles the global linear stability of 2D flows subject to
small-amplitude three-dimensional (3D) spanwise-periodic control. Building on previous
work for parallel flows, an adjoint method is proposed for computing the second-order
sensitivity of eigenvalues. Since such control has indeed a zero net first-order (linear)
effect, the second-order (quadratic) effect prevails. The sensitivity operator allows one
(i) to predict the effect of any control without actually computing the controlled flow
and (ii) to compute the optimal control (and an orthogonal set of suboptimal controls)
for stabilization and destabilization or frequency modification. The proposed method takes
advantage of the very spanwise-periodic nature of the control to reduce computational
complexity (from a fully 3D problem to a 2D problem). The approach is applied to
the leading eigenvalue of the laminar flow around a circular cylinder, and two kinds of
spanwise-harmonic control are explored: (i) wall actuation via blowing and/or suction
and (ii) wall deformation. By decomposing the eigenvalue variation, we found that the
3D contribution (from the spanwise-periodic first-order flow modification) is generally
larger than the 2D contribution from the mean flow correction (spanwise-invariant second-
order flow modification). Over a wide range of control spanwise wave numbers, the
optimal control for flow stabilization is symmetric about the wake centerline, leading to
varicose streaks in the cylinder wake. Analyzing the competition between amplification
and stabilization shows that optimal varicose streaks are not significantly more amplified
than sinuous streaks but have a stronger stabilizing effect. The optimal wall deformation
induces a flow modification very similar to that induced by the optimal wall actuation. In
general, spanwise and tangential actuation have a small contribution to the optimal control,
so normal-only actuation is a good trade-off between simplicity and effectiveness. Our
method opens the way to the systematic design of optimal spanwise-periodic control for a
variety of control objectives other than linear stability properties.

DOI: 10.1103/PhysRevFluids.4.053901

I. INTRODUCTION

A large body of studies is devoted to the control the flow over bluff bodies, which is well known
to produce a significant amount of mean aerodynamics drag as well as unsteady vortex shedding.
Several approaches have been proposed, from open-loop control featuring either passive Appendixes
(e.g., end plate, splitter plate, small cylinder, or flexible tail) or actuating devices (e.g., plasma
actuation or steady and/or unsteady base bleeding), to closed-loop control (e.g., via transverse
motion or wall blowing and/or suction, all relying on an appropriate sensing of flow variables).
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We focus here on open-loop bluff-body flow control, and more specifically on spanwise
waviness, i.e., the steady spanwise-periodic control of a nominally two-dimensional (2D) flow. This
type of control has proven efficient to suppress or attenuate vortex shedding in the wake of bluff
bodies thanks to three-dimensional (3D) perturbations created with devices ranging from wrapped
helical cables [1] to indentations of the trailing or leading edges (Refs. [2–4] and many others), even
at high Reynolds numbers, as discussed in Ref. [5]. Similarly, azimuthally periodic chevrons were
shown to reduce low-frequency noise emitted by axisymmetric jets (e.g., Refs. [6,7]). This noise
reduction was interpreted in Refs. [8,9] as a reduction in the growth rate of the Kelvin-Helmholtz
instability.

Many other studies have investigated the effects of spanwise waviness on stability and/or
aerodynamic performance in both laminar and turbulent regimes, for instance, wavy circular cylin-
ders [10–14], twisted circular cylinders [15], circular cylinders with wavy wall actuation [16,17],
wavy rectangular cylinders [18], and wavy airfoils [19,20].

In these studies, the shape of the disturbance and its spanwise (or azimuthal) wavelength were
chosen arbitrarily, or improved by iterative trial and error. More recently, inspired by the success of
spanwise-periodic control in the context of streaky boundary layers, Del Guercio et al. [21] proposed
to optimize for the spatial amplification of 3D disturbances in a nominally 2D cylinder wake, thereby
targeting the largest possible flow modification. They observed, without however ensuring it, that
this flow modification had a stabilizing effect on the leading eigenmode.

The optimal growth rate reduction in 2D flows by a 2D steady distributed force or boundary
flow can be easily determined through the calculation of a linear sensitivity map, obtained with
an adjoint formulation [22,23]. The scalar product of this linear sensitivity map with any arbitrary
control yields the variation of the growth rate. It is well known that for the spanwise-periodic control
of nominally 2D flows, this scalar product vanishes, and that at leading order the variation of the
eigenvalue with respect to the uncontrolled (2D) case depends quadratically upon the 3D modulation
amplitude [24–27]. This quadratic dependence on the control amplitude was first shown to apply
for absolute growth rates in parallel wakes [28], and later for temporal growth rates in parallel
wakes [29] and for the sensitivity of global modes in nonparallel wakes [21,30].

The second-order sensitivity tensor has been explicitly computed in Ref. [25] for the Ginzburg-
Landau equation, and in Refs. [26,27] for parallel flows. More specifically, in our previous study [27]
we computed optimal spanwise-periodic base flow modifications for parallel flows by rewriting
and manipulating the second-order perturbation system into a Hessian matrix form. This enabled
us to extract, from the Hessian’s extremal eigenvalues, the most stabilizing and destabilizing flow
modifications. These manipulations involved forming explicitly the inverse of a matrix, which was
possible because the flow was parallel with 1D eigenmodes. In the case of 2D flows, like the flow
around a circular cylinder, Tammisola [31] proposed an algorithm to compute the second-order
eigenvalue variation caused by a given spanwise-periodic perturbation by solving two consecutive
linear problems. This approach enabled her to optimize the most stabilizing wall blowing by
repeatedly applying the previous algorithm to a finite basis of functions spanning the cylinder wall.

The objective of this paper is to generalize the framework of Ref. [27] to 2D flows and
thereby obtain a continuous formulation of the second-order sensitivity tensor. When applied
to wall actuation, this formulation reveals the superimposition of two contributions: (i) from
the interaction between the spanwise-periodic base flow modification and the spanwise-periodic
eigenmode modification and (ii) from the spanwise-invariant base flow modification or “mean flow
correction” [32–34] (see also Secs. II C 1 and IV D).

The paper is organized as follows. Section II describes the problem of spanwise-periodic control
in nonparallel 2D flows, the formulation of the second-order eigenvalue sensitivity tensor, and the
optimization procedure used to compute the optimal control. Numerical details are given in Sec. III.
The method is illustrated with the spanwise-periodic control of the flow around a circular cylinder:
optimal wall blowing and/or suction and optimal wall deformation for stabilization are presented in
Secs. IV–V and optimal control for frequency modification in Sec. VI. Finally, Sec. VII summarizes
the main conclusions. Appendixes A–C provide technical details about second-order sensitivity, the
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specific case of spanwise-periodic control, and the optimization procedure. Appendix D briefly
comments on results for spanwise-periodic volume control, drawing links with 2D volume control
and with spanwise-periodic wall control. Appendix E discusses the validity of the results in the
limit of small spanwise wave numbers, based on a 3D linear stability analysis of the uncontrolled
2D flow.

II. PROBLEM FORMULATION

A. Uncontrolled flow

We consider an incompressible flow, e.g., the flow past a spanwise-infinite circular cylinder. We
use the notation Q(x, y, z, t ) = (U, P)T for the flow state, with U = (U,V,W )T being the velocity
field of components U , V , and W in the streamwise x, cross-stream y, and spanwise z directions and
P being the pressure field. The flow is governed by the nonlinear Navier-Stokes (NS) equations in
the domain � and no-slip boundary condition on the cylinder wall �,

∂t U + U · ∇U + ∇P − Re−1∇2U = 0, ∇ · U = 0 in �, (1)

U = 0 on �, (2)

which we note in compact form

E ∂t Q + N(Q) = 0 (3)

after introducing the operator E such that E Q = (U, 0)T , and the NS operator N(Q). In our example
flow, the Reynolds number Re = U∞D/ν is defined with the cylinder diameter D, free-stream
velocity U∞, and fluid kinematic viscosity ν.

We focus in particular on the two-dimensional (2D) steady flow Q(x, y) = (U,V, 0, P)T solution
of the steady NS equations

U · ∇U + ∇P − Re−1∇2U = 0, ∇ · U = 0 in �, (4)

U = 0 on �, (5)

and hereafter denoted “base flow.” The dynamics of small-amplitude perturbations q′(x, y, z, t ) =
q(x, y, z)eλt = (u, p)T eλt are governed by the linearized NS equations

λu + U · ∇u + u · ∇U + ∇p − Re−1∇2u = 0, ∇ · u = 0 in �, (6)

u = 0 on �, (7)

which we note in compact form as an eigenvalue problem,

(λE + A)q = 0, (8)

after introducing A as the NS operator linearized around the base flow. The set of growth rates λr

and frequencies λi determine the linear stability properties of the flow. Specifically, the cylinder
flow becomes unstable at Re = 47 via a supercritical Hopf bifurcation: A pair of complex conjugate
eigenvalues crosses the λr = 0 axis, and time invariance is broken by the shedding of 2D vortices at
a frequency close to λi/(2π ) = 0.12. The flow remains 2D up to Re = 189 [35].
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FIG. 1. Sketch of the steady spanwise-periodic control considered in this study: (a) wall blowing and/or
suction and (b) wall deformation.

B. Eigenvalue variation induced by spanwise-periodic control

We now assume that a small-amplitude steady control is applied to the flow, by means of a
volume force C(x, y, z) = (Cx,Cy,Cz )T in the domain, and blowing and/or suction Uc(x, y, z) =
(Uc,Vc,Wc)T at the cylinder wall [see the sketch in Fig. 1(a)]:

U · ∇U + ∇P − Re−1∇2U = εC, ∇ · U = 0 in �, (9)

U = εUc on �. (10)

The effect of the control is a modification of the base flow, eigenvectors, and eigenvalues, which can
be expressed with a power series expansion in the small amplitude ε:

Q = Q0 + εQ1 + ε2Q2 + · · · , (11)

q = q0 + εq1 + ε2q2 + · · · , (12)

λ = λ0 + ελ1 + ε2λ2 + · · · . (13)

We are interested in particular in the eigenvalue variation induced by the control.

FIG. 2. Sketch of the flow modification (velocity isosurfaces) induced by a steady spanwise-periodic
control (Fig. 1): first-order spanwise-periodic modification (red and blue; here corresponding to low- and
high-speed streamwise streaks) and spanwise-invariant second-order modification (mean flow correction,
green). (The spanwise-periodic component of the second-order modification is not shown.) The net linear
effect of U1 on the eigenvalue is zero, ελ1 = 0. By contrast, U1 and U2 have a nonzero quadratic effect ε2λ2.
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We first observe that the base flow at order ε0, ε1, and ε2 is solution of

N(Q0) = 0 in �, U0 = 0 on �, (14)

A0Q1 = (C, 0)T in �, U1 = Uc on �, (15)

A0Q2 = (−U1 · ∇U1, 0)T in �, U2 = 0 on �, (16)

where A0 is the NS operator linearized around the uncontrolled base flow Q0. Note that the control
modifies the base flow at all orders εn, n � 1, due to forcing terms similar to −U1 · ∇U1 in (16) for
n = 2. This contrasts with the case of a prescribed base flow modification (without control), where
Q is exactly equal to Q0 + εQ1.

Next, we turn our attention to the eigenvalue problem. At leading order ε0, we obtain

(λ0E + A0)q0 = 0. (17)

We focus on the leading (most unstable) eigenmode q0(x, y) = (u0, v0, 0, p0)T , which is two
dimensional, like Q0. At first and second orders ε1, ε2, we obtain

(λ0E + A0)q1 = −(λ1E + A1)q0, (18)

(λ0E + A0)q2 = −(λ1E + A1)q1 − (λ2E + A2)q0, (19)

where the linear operators A1 and A2 depend only on U1 and U2, respectively (see Appendix A).
We introduce 2D and 3D Hermitian inner products in the domain and on the wall

(a|b) =
∫∫

a · b dxdy, ((a|b)) = lim
Lz→∞

1

Lz

∫ Lz/2

−Lz/2
(a|b) dz, (20)

〈a|b〉 =
∫

�

a · b d�, 〈〈a|b〉〉 = lim
Lz→∞

1

Lz

∫ Lz/2

−Lz/2
〈a|b〉 dz, (21)

where the overbar stands for the conjugate of a complex quantity. In all cases, the induced norm will
be denoted || · ||. We denote B† the adjoint operator of an operator B such that

((a|Bb)) = ((B†a|b)) ∀ a, b. (22)

For instance, the adjoint NS operator is defined by A†
0q†

0 = u†
0 · ∇UT

0 − U0 · ∇u†
0 − ∇p†

0 −
Re−1∇2u†

0. Projecting (18) on the leading adjoint eigenmode q†
0 solution of

(λ0E + A†
0)q†

0 = 0 (23)

and normalized according to (q†
0|Eq0) = 1 allows us to obtain the first-order eigenvalue varia-

tion [24,36–38]:

λ1 = ((q†
0|−A1q0)). (24)

Although we will never need to compute it explicitly, we note that the first-order eigenmode
modification can be expressed from (18) as

q1 = −(λ0E + A0)−1(λ1E + A1)q0. (25)

In general, the operator (λ0E + A0) is not invertible since (17) has a nontrivial solution, but the
inverse is taken in the subspace orthogonal to q0, and q1 is defined up to any constant component in
the direction of q0 [24]. This is made possible by the solvability condition (Fredholm theorem) to
be satisfied by (18): The forcing term (λ1E + A1)q0 is orthogonal to the solution q†

0 of the adjoint
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equation (23) associated with (17), as expressed precisely by (24). The second-order eigenvalue
variation is obtained in a similar way:

λ2 = ((q†
0|−A2q0)) + ((q†

0|(λ1E + A1)(λ0E + A0)−1(λ1E + A1)q0)). (26)

In this study, we focus on spanwise-periodic control. In this case, the first-order flow modification
Q1 and the operator A1 are periodic in z (see Fig. 2); therefore, the inner product (24) vanishes (an
effect of averaging in the z direction) and the first-order eigenvalue variation is zero, λ1 = 0. In
other words, similar to spanwise-periodic flow modification [25,28,29], spanwise-periodic control
has no first-order effect on stability properties. Accordingly, the second-order variation simplifies to

λ2 = ((q†
0|−A2q0)) + ((q†

0|A1(λ0E + A0)−1A1q0)). (27)

The second term is similar to the expression obtained for parallel flows [27] and more generally
for prescribed base flow modification (without control). The first term results from the second-order
flow modification Q2 induced by the control, as recently revealed in the different context of
time-dependent parallel flows by Marant and Cossu [34]. It turns out that the spanwise-periodic
component of Q2 has no effect on λ2, due to the above-mentioned averaging effect. However,
Q2 also contains a spanwise-invariant component that does have an effect on λ2 (see Fig. 2 and
Appendix B), and therefore the first term in (27) must be retained. This term, which corresponds to
a mean flow correction [32–34], does not seem to have been considered in Ref. [31]. Its influence is
systematically evaluated in the following sections.

C. Second-order sensitivity

1. General expression

The expression of the second-order eigenvalue variation (27) is useful to highlight the contribu-
tions of the first-order and second-order flow modifications. It is also of practical use for evaluating
the effect of a given control since it does not require solving the linear stability of the controlled
flow or even computing the eigenmode modification q1. However, it requires solving for the flow
modifications Q1 and Q2. A more useful alternative lies in sensitivity operators S2,∗ that allow one
to evaluate λ2 directly for any volume control or wall control with simple inner products:

λ2 = ((C|S2,CC)) + 〈〈Uc

∣∣S2,Uc Uc
〉〉
. (28)

A series of manipulations (detailed in Appendix A) leads to the explicit expressions of such
second-order sensitivity operators:

S2,C = PT A†
0,C

−1
S2,Q1 A0,C

−1P, (29)

S2,Uc = PT A†
0,Uc

−1
S2,Q1 A0,Uc

−1P. (30)

In these expressions, A0,C and A0,Uc are defined by the wall-actuation-only and volume-control-only
versions of (15), respectively:

A0,CQ1 = (C, 0)T in �, U1 = 0 on �, (31)

A0,Uc Q1 = 0 in �, U1 = Uc on �; (32)

P is the prolongation operator to velocity-pressure space from velocity-only space (all three velocity
components in the most general case, or one or two components when considering specific wall
controls; see, e.g., Sec. IV F); and S2,Q1 is the second-order sensitivity to flow modification such
that λ2 = ((Q1|S2,Q1 Q1)):

S2,Q1 = K + M†(λ0E + A0)−1L, (33)
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where K, L, and M only depend on the direct and global eigenmodes q0, q†
0 of the uncontrolled flow.

The second term is similar to the second-order sensitivity operator for parallel flows [27], whereas
the first term is new and results from the control-induced second-order flow modification Q2 or,
more specifically, from the spanwise-invariant component of Q2 (mean flow correction; see Fig. 2).

2. Spanwise-periodic expression

At this stage, the operators (29) and (30) do not depend on control-specific flow modifications
Q1, Q2; in principle, they can therefore be computed once for all. However, they still depend on
the spanwise coordinate z. We now derive reduced z independent, yet exact, expressions of the
sensitivity operators. As shown below, this makes it possible to evaluate the eigenvalue variation λ2

and determine the optimal spanwise-periodic controls C and Uc using only 2D fields, making these
operations significantly more computationally affordable than with 3D fields.

As detailed in Appendix B, we consider the following harmonic wall forcing on � and harmonic
volume forcing in �:

Uc(x, y, z) =

⎛⎜⎝Ũc(x, y) cos(βz)

Ṽc(x, y) cos(βz)

W̃c(x, y) sin(βz)

⎞⎟⎠, C(x, y, z) =

⎛⎜⎝C̃x(x, y) cos(βz)

C̃y(x, y) cos(βz)

C̃z(x, y) sin(βz)

⎞⎟⎠. (34)

With this control, the first-order flow modification is also spanwise-harmonic, of the same wave
number:

Q1 =

⎛⎜⎜⎜⎝
Ũ1(x, y) cos(βz)

Ṽ1(x, y) cos(βz)

W̃1(x, y) sin(βz)

P̃1(x, y) cos(βz)

⎞⎟⎟⎟⎠. (35)

Therefore, the forcing term −U1 · ∇UT
1 in (16) is the sum of a 2D term (wave number 0) and of a

3D term (wave number 2β). In turn, the second-order flow modification is the sum

Q2 = Q2D
2 (x, y) + Q3D

2 (x, y, z) (36)

of a 3D spanwise-periodic component Q3D
2 (x, y, z) of wave number 2β that does not contribute to

λ2, and of a 2D spanwise-invariant component Q2D
2 (x, y) = (U 2D,V 2D, 0, P2D)T , the mean flow

correction. Taking advantage of the specific form of Q1 and Q2 allows us to simplify the sensitivity
operators:

S̃2,Q̃1
= K̃ + M̃†(λ0E + Ã0)−1L̃, (37)

S̃2,C̃ = PT Ã†
0,C

−1
S̃2,Q̃1

Ã0,C
−1

P, (38)

S̃2,Ũc
= PT Ã†

0,Uc

−1
S̃2,Q̃1

Ã0,Uc

−1
P, (39)

where all the operators involved are purely z-independent versions of their 3D counterparts. The
eigenvalue modification induced by any spanwise-periodic control can now be evaluated with simple
2D inner products:

λ2 = (C̃|̃S2,C̃C̃) + 〈Ũc

∣∣̃S2,Ũc
Ũc
〉
. (40)

D. Optimal spanwise-periodic control

Second-order sensitivity operators are useful not only for predicting the eigenvalue variation
induced by a specific control, but also for computing the optimal control, i.e., the control that
induces the largest eigenvalue variation (in a broad sense, i.e., the largest increase or decrease of the
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eigenmode’s growth rate λ2r or frequency λ2i). Section II D 1 presents the method for computing
optimal volume control and wall control (blowing and/or suction). Section II D 2 explains how the
method can be slightly modified for optimal wall deformation.

Note that in this study we focus on optimal wall blowing and/or suction and optimal wall
deformation, motivated by their ease of implementation and by the vast existing body of literature.
For the sake of completeness, some results for optimal volume control are briefly mentioned in
Appendix D, drawing interesting links with 2D volume control and with spanwise-periodic wall
control.

1. Optimal spanwise-periodic volume and wall control

Given the expressions of the second-order sensitivity operators (38) and (39), the optimal unit-
norm control is defined by the maximization problem

max
||C̃||=1

(λ2r ) = max
||C̃||=1

(
C̃
∣∣ 1

2

(̃
S2,C̃,r + S̃T

2,C̃,r

)
C̃

) = max
C̃

(
C̃
∣∣ 1

2

(̃
S2,C̃,r + S̃T

2,C̃,r

)
C̃

)

(C̃ | C̃)

= λmax
{

1
2

(̃
S2,C̃,r + S̃T

2,C̃,r

)}
, (41)

max
||Ũc||=1

(λ2r ) = max
||Ũc||=1

〈
Ũc

∣∣ 1
2

(̃
S2,Ũc,r

+ S̃T
2,Ũc,r

)
Ũc
〉 = max

Ũc

〈
Ũc

∣∣ 1
2

(̃
S2,Ũc,r

+ S̃T
2,Ũc,r

)
Ũc
〉

〈Ũc|Ũc〉
= λmax

{
1
2 (̃S2,Ũc,r

+ S̃T
2,Ũc,r

)}
, (42)

where S̃2,∗,r and S̃2,∗,i stand for the real and imaginary part of S̃2,∗, respectively. Similar expressions
hold for min(λ2r ), max(λ2i ), and min(λ2i ). In each case, the last equality comes from the operators
S̃2,∗,r + S̃T

2,∗,r and S̃2,∗,i + S̃T
2,∗,i being real symmetric, so that the Rayleigh quotient is maximal for

the largest eigenvalue (resp., minimal for the smallest eigenvalue). Thus, the maximization can be
solved as an eigenvalue problem (see also Appendix C). The optimal control C̃ or Ũc corresponding
to the largest (resp., smallest) eigenvalue variation λ2r or λ2i is the eigenvector associated with λmax

(resp., λmin). In addition to the largest (resp., smallest) eigenvalue, solving for the second, third,
. . . , kth largest (resp., smallest) eigenvalues yields an orthogonal set of optimal controls.

At this point, two important differences with optimal 2D control should be stressed (see also
Ref. [27]). Recall that for spanwise-invariant control, sensitivity operators are fields defined by
λ1 = (S1,C|C) + 〈S1,Uc |Uc〉 [22,23]. One can show that the optimal control for flow destabilization,
for instance, is the real part of the sensitivity field itself; conversely, the optimal control for flow
stabilization is minus the real part of the sensitivity field. The situation is different for spanwise-
periodic control. First, sensitivity operators are not fields but tensors. Second, changing the sign of
a spanwise-periodic control does not change the eigenvalue variation (because the latter is quadratic
in C̃ and Ũc; or alternatively because changing the sign of the control is equivalent to shifting the
z origin by π/β). This shows that the optimal controls associated with max(λ2r ) and min(λ2r ) [or
with max(λ2i ) and min(λ2i )] are not simply of opposite signs but must necessarily have different
spatial structures.

2. Optimal spanwise-periodic wall deformation

The formalism introduced so far allows one to compute the optimal wall control for modifying
the growth rate or the frequency of a global eigenmode. A minor modification allows one to compute
the optimal wall deformation as well, as outlined in this section. This is highly relevant to open-loop
control applications, where passive strategies (such as shape modification) may be preferred to
active strategies (such as wall blowing and/or suction).

Consider a small-amplitude deformation of the cylinder [see sketch in Fig. 1(b)]. If at any
spanwise location z we denote the undeformed radius R0 and the deformed radius R(θ ) = R0 +
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εR1(θ ), the no-slip condition at the deformed wall U(R) = 0 can be Taylor expanded in U and R:

U(R0 + εR1) = U0(R0 + εR1) + εU1(R0 + εR1) + · · ·
= U0(R0) + ε

[
R1 ∂RU0|R0

+ U1(R0)
]+ · · · = 0, (43)

where ∂RU0|R0
= ∂nU0|R0

is the normal derivative of the original flow at the undeformed wall
(“flattened” boundary condition). Since the original flow satisfies the no-slip condition U0(R0) = 0,
it follows at first order:

R1 ∂nU0|R0
+ U1(R0) = 0. (44)

From this relation, it is straightforward to obtain the flow modification U1(R0) induced at the
wall by a given deformation R1(θ ). Here we are interested in the inverse problem: Is there a wall
deformation R1(θ ) equivalent to a given wall actuation U1(R0)? The answer is not obvious at first
glance since, at each azimuthal location θ (44) is an overdetermined system of three equations for
one single unknown R1. However, we note that (i) U0z = 0 everywhere since the unperturbed flow
is 2D and thus ∂nU0z|R0

= 0; (ii) continuity ensures that ∂nU0n|R0
= 0;1 and so finally

U1n(R0) = 0, R1 ∂nU0t |R0
+ U1t (R0) = 0, U1z(R0) = 0. (45)

We therefore observe that, at first order, a wall deformation R1(θ ) induces at the original wall a
purely tangential velocity U1t and no normal velocity:

U1t (R0) = −R1 ∂nU0t |R0
. (46)

Conversely, a given tangential wall actuation U1t is equivalent, at first order, to a well-defined wall
deformation R1.

Given the equivalence (46) between wall deformation and tangential wall blowing and/or
suction, for a spanwise-periodic wall deformation R = R0 + εR̃1(θ ) cos(βz) the sensitivity to wall
deformation can be defined as

S̃2,R̃1
= PT

R Ã†
0,Uc

−1
S̃2,Q̃1

Ã0,Uc

−1
PR, such that λ2 = 〈R̃1

∣∣̃S2,R̃1
R̃1
〉
, (47)

where PR is the prolongation operator to velocity-pressure space from tangential velocity-only space
weighted by −∂nU0t |R0

. The optimal wall deformation is defined by

max
||R̃1||=1

(λ2r ) = max
||R̃1||=1

〈
R̃1

∣∣ 1
2

(̃
S2,R̃1,r + S̃T

2,R̃1,r

)
R̃1
〉 = max

R̃1

〈
R̃1| 1

2

(̃
S2,R̃1,r + S̃T

2,R̃1,r

)
R̃1
〉

〈R̃1|R̃1〉
= λmax

{
1
2

(̃
S2,R1,r + S̃T

2,R1,r

)}
, (48)

with similar expressions for min(λ2r ), max(λ2i ), and min(λ2i ).
We note that wall deformation has a twofold effect on the eigenmode: (i) it modifies the base flow

U on which the eigenmode develops and (ii) it modifies the no-slip boundary for the eigenmode.
While only the first effect is present for wall blowing and/or suction, rigorously speaking the second
effect too must be taken into account for wall deformation. Just as the no-slip boundary condition
was Taylor expanded and flattened for U, it can be Taylor expanded and flattened for u:

R1 ∂nu0|R0
+ u1(R0) = 0, (49)

which specifies the boundary value of u1 as a function of the known u0 and R1. In Sec. V, we will
show that this effect from the boundary condition is actually much smaller than the effect from the
base flow.

1For instance, the continuity equation in cylindrical coordinates, ∂rU0r + U0r/r + ∂θU0θ /r + ∂zU0z = 0,
reduces to ∂rU0r = 0 at the wall owing to the no-slip condition, to the wall radius R0 being constant, and
to the unperturbed flow being 2D.
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III. NUMERICAL METHOD

A. Sensitivity analysis and optimization

All calculations are performed using the methods described in Refs. [39,40]. A two-dimensional
triangulation of the domain

� = {(x, y) | − 10 � x � 50, |y| � 10,
√

x2 + y2 � 0.5} (50)

with mesh points strongly clustered close to the cylinder wall is generated using the finite-element
software FREEFEM++ [41], resulting in approximately 9100 elements. Velocity and pressure fields
are discretized with P2 and P1 Taylor-Hood elements, respectively, yielding a total of approximately
41 000 degrees of freedom. All discrete operators involved in the calculation of base flow, leading
eigenmode, and optimal control are built from their continuous counterparts expressed in variational
form. Steady base flows are obtained by solving (5) with an iterative Newton method. The linear
stability eigenvalue problem (for the unperturbed leading eigenmode q0) and all optimization
eigenvalue problems (for the optimal controls C and Uc and optimal wall deformation R1) are
solved with an implicitly restarted Arnoldi method. Second-order sensitivity operators contain
inverse operators and are therefore not formed explicitly; rather, the optimization is performed
iteratively and only requires evaluating matrix-vector products and solving linear systems of
equations (see also Appendix C). We generally computed the largest and smallest three eigenvalues
in the optimization eigenvalue problems; we checked that they were well converged by computing
up to 20 leading eigenvalues for some conditions.

Uncontrolled base flow calculations were validated in the range 50 � Re � 100 by comparing
the length of the recirculation region to results reported in Ref. [38]; eigenvalue calculations were
validated in the same range of Reynolds numbers by comparing the leading growth rate to results
reported in Refs. [38,42]. The agreement was very good in all cases. Unless otherwise stated, we
focus in the following on the flow at Re = 50.

B. Three-dimensional stability analysis

Fully three-dimensional calculations are performed for validation purposes with the open-
source, massively parallel spectral-element code NEK5000 [43]. These calculations serve a fourfold
purpose:

(1) verify that our two-dimensional optimization is properly implemented;
(2) verify that the total controlled base flow Q is well captured by the expansion (11) truncated

at order ε2;
(3) verify that higher order eigenvalue variations εnλn, n > 2 can be safely discarded for small

amplitudes ε; and
(4) assess whether any other eigenmode is destabilized when then control stabilizes the leading

eigenmode (an effect observed in the plane Poiseuille flow [27]).
The numerical method is similar to that described in Ref. [44]. Lagrange polynomial interpolants

of order N = 5 and N − 2 = 3 are used for velocity and pressure, respectively, based on Gauss-
Lobatto-Legendre quadrature points in each hexahedral element. The computational domain has
the same extension as the 2D domain in the x and y directions, and 0 � z � 4π in the spanwise
direction. The total 3D base flow Q induced by the control is obtained by solving the nonlinear
NS equations (9) and (10) with a first-order scheme. The unstable steady solution is obtained by
using the BOOSTCONV algorithm proposed in Ref. [45]. The 3D eigenvalue problem associated with
the linear stability of the total base flow is solved with an Arnoldi method, using the linearized
version of NEK5000 as a time stepper, and with a second-order scheme (BDF2). For both nonlinear
and linearized NS equations, convective terms are discretized in time with explicit backward
differentiation and viscous terms with an implicit scheme.
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FIG. 3. (a) Normalized growth rate variation induced by the optimal wall control Uw for stabilization
(λ2r < 0) and destabilization (λ2r > 0). Optimal (k = 1) and first suboptimals (k = 2, 3). Re = 50. (b) Close-
up view of suboptimals. In this and subsequent figures, increasing values of k are shown with thinner lines and
lighter hues.

IV. OPTIMAL WALL ACTUATION FOR STABILIZATION

In this section, we present and discuss the effect of optimal spanwise-periodic wall actuation
(blowing and/or suction) for flow stabilization. Optimal wall deformation for stabilization will be
considered in Sec. V and optimal control for frequency modification in Sec. VI. For the sake of
brevity, optimal volume control is reported in Appendix D.

A. Optimal wall actuation

We first investigate optimal flow stabilization with spanwise-periodic wall blowing and/or
suction, using all velocity components (Un,Ut ,W )T . Figure 3 shows the optimal stabilizing second-
order growth rate variation [min(λ2r ) < 0] obtained with a unit-norm control at Re = 50. The
variation is decreasing with spanwise wave number β, which indicates that larger wavelengths
2π/β are more efficient, as already observed in other shear flows [25,26,29]. The stabilizing effect
obtained with suboptimal controls is much smaller in the range of β of interest. The optimal
destabilizing effect [max(λ2r ) > 0] is also shown for reference and appears considerably smaller
than its optimal stabilizing counterpart (recall that, unlike the 2D case, 3D spanwise-harmonic
optimal stabilizing and destabilizing controls are not simply related by opposite signs).

As analyzed in Refs. [26,27], the strong divergence observed when β → 0 results from a modal
resonance between the 2D leading eigenmode and 3D eigenmodes of spanwise wave number
β0 = ±β. As β decreases, the minimal distance d between those 3D eigenvalues and the 2D
leading eigenvalue decreases too, the modal resonance becomes stronger and results in a not-small
eigenvalue variation λ2, and the expansion (13) breaks down. For this expansion to remain valid,
the control amplitude ε must stay smaller than the previously defined distance d between the
2D eigenvalue and the closest β-periodic eigenvalue [26]. A 3D linear stability analysis of the
uncontrolled flow (see details in Appendix E) shows that d 	 0.035, 0.075, and 0.185 for β = 0.4,
0.6, and 1, respectively. Therefore, our results are valid at those spanwise wave numbers β for
control amplitudes ε smaller than those d values (equivalently, they are valid at those values of
ε = d for wave numbers larger than those β values). We note that, in an experimental setting, the
finite spanwise extension of the system sets a minimal value for β.

The eigenvalue variation induced by the optimal wall control for destabilization and stabilization
for β = 1 is shown in Fig. 4. The quadratic variation λ = λ0 + ε2λ2 from the 2D sensitivity
prediction compares well with the total variation obtained with 3D stability analysis.
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FIG. 4. Effect of the optimal (a) destabilizing and (b) stabilizing wall blowing and/or suction on
growth rate σ and frequency ω. Lines, sensitivity prediction; symbols, full stability analysis. Re = 50,
β = 1.

Figure 5 shows optimal wall control for β = 1. The optimal destabilizing wall control in
Fig. 5(a) has a y-antisymmetric normal component that is maximal at θ = ±45◦ and ±100◦ and
a y-symmetric tangential component that changes sign close to the separation points θ = ±60◦.
The spanwise component is rather small. The optimal stabilizing wall control has a symmetric
normal component that is maximal on the top and bottom sides of the cylinder (θ = ±90◦) and
minimal on the upstream and downstream faces. The orientation is mainly normal, although the
antisymmetric tangential component is substantial around the separation points (θ = ±60◦). Again,
the spanwise component is small. Note that properties of top-down symmetry (symmetry about the
wake centerline y = 0) alone do not explain the destabilizing or stabilizing character of the control,
as illustrated by the first suboptimal control. Overall, little qualitative variation is observed for wave
numbers in the range 0.5 � β � 2.

B. Control-induced flow modification

Flow modifications induced by the optimal wall control are shown in Fig. 6, with the first-order
(spanwise-periodic) modification Q1 in the left and middle panels (x-y and z-y planes respectively)
and the spanwise-invariant component Q2D

2 of the second-order modification in the right panel.
The optimal destabilizing wall control [Fig. 6(a)] induces a double-streak pattern in the cylinder
wake: moving along z, the streamwise velocity takes alternatively positive and negative values in
the upper half-domain and the opposite sign in the lower half-domain. The mean flow correction
has two regions of negative streamwise velocity concentrated in the shear layers on both sides
of the recirculation region. By contrast, the optimal stabilizing wall control [Fig. 6(b)] induces a
simple-streak pattern, with high- and low-velocity streaks extending over the whole height of the
wake. The mean flow correction has again two regions of negative streamwise velocity in the shear
layers and a region of positive streamwise velocity along the centerline y = 0. The latter is expected
to reduce the length of the recirculation region [39] and to have a stabilizing effect [23]. Note that
both first- and second-order flow modifications have much larger amplitudes in the stabilizing case
than in the destabilizing case. Finally, the first suboptimal stabilizing wall control [Fig. 6(c)] induces
double streaks which are qualitatively similar to those of the optimal destabilizing case, although
stronger and extending farther downstream. The mean flow correction consists primarily of a strong
region of positive streamwise velocity along the centerline. The different symmetries correspond to
varicose and sinuous streaks, respectively [5,16,28,29].

The streaks induced by the optimal stabilizing wall control are strongly reminiscent of those
induced by the steady, spanwise-periodic wall control optimized for maximal energy amplification,
as computed in Ref. [21]. The streamwise evolution of the streaks, measured by the energy density
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FIG. 5. Optimal wall control Ũw for destabilization or stabilization: left, arrows of in-plane velocity
components; right, full velocity field variation with θ . Re = 50, β = 1. (a) Optimal destabilizing wall control;
(b) optimal stabilizing wall control; and (c) first suboptimal stabilizing wall control.

E (x) = ∫ (Ũ 2
1 + Ṽ 2

1 + W̃ 2
1 ) dy shown in Fig. 7(a), has a bell-shape typical of spatial transient

growth: Streamwise vortices generated near the cylinder are amplified via the lift-up effect into
streamwise streaks, which then decay smoothly by diffusion. As shown in Fig. 7(b), while the
location xmax of maximal energy density decreases monotonously with β, the maximum Emax itself
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FIG. 6. First-order flow modification U1 = [Ũ1(x, y) cos(βz), Ṽ1(x, y) cos(βz),W̃1(x, y) sin(βz)]T (span-
wise periodic) induced by the (a) optimal destabilizing, (b) optimal stabilizing, and (c) first suboptimal
stabilizing wall control, at Re = 50, β = 1. Left: vector fields (U1,V1)T at z = 0 and contours of W1 at
z = π/(2β ). Middle: vector field (V1,W1)T and contours of U1 at x = 2. Right: induced mean flow correction
U2D

2 = (U 2D
2 (x, y),V 2D

2 (x, y), 0)T (spanwise invariant), shown with vector field (U 2D
2 ,V 2D

2 )T and contours of
velocity magnitude.

is largest for β = 1. This maximum is also strongly increasing with Re, as shown in Fig. 8(a), a trend
followed closely by the eigenvalue variation. This increase of |λ2r (Re)| is quicker than that of the
linear growth rate λ0r (Re) (approximately exponential and linear close to Rec, respectively), which
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FIG. 7. (a) Energy density E (x) of the flow modification Q1 induced by the optimal stabilizing wall control,
β = 0.5, 1, and 2. (b) Maximum energy density and location of the maximum as functions of spanwise wave
number. Re = 50.
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FIG. 8. Variation with Reynolds number. (a) Normalized growth rate variation (in absolute value), and
maximum energy density, both for the flow modification induced by the optimal wall control for stabilization.

(b) Wall control amplitude εs =
√

λ0r/(|λ2r |/||Ũw||2) necessary to fully stabilize the leading eigenvalue. β = 1.

results in the control amplitude εs = √
λ0r/|λ2r | needed to fully restabilize the flow2 exhibiting a

maximum (for Re 	 58) as shown in Fig. 8(b). The decrease in εs at larger Re seems to suggests that
it becomes increasingly easier to stabilize the flow; this point deserves further investigation because
a second eigenmode becomes unstable in the uncontrolled flow and because the range of validity in
ε of the sensitivity prediction may decrease with Re.

These observations agree in all aspects with those about the optimal streaks of Ref. [21],
suggesting that, when using spanwise-periodic wall control, similar mechanisms are at play in
optimal spatial growth and optimal stabilization. In other words, our results confirm that maximizing
spatial growth is the optimal strategy for stabilizing the flow.

C. Competition between amplification and stabilization

We analyze in more detail how much stabilization is due to an efficient amplification of the
wall control into the induced flow modification and how much is due to an efficient stabilization
of this induced flow. To this aim, we separate the two effects by rewriting the eigenvalue variation,
normalized for unit-norm wall control, as

λ2r

||Ũw||2 = ||Q̃1||2
||Ũw||2

λ2r

||Q̃1||2
. (51)

Here G2 = ||Q̃1||2/||Ũw||2 is the amplification from wall control Uw to flow modification Q1, and
λ2r/||Q̃1||2 is the eigenvalue variation induced by a unit-norm flow modification Q1/||Q̃1||.

Figure 9 shows that the optimal wall control (k = 1) is only slightly more amplified into varicose
streaks than the first suboptimal wall control (k = 2) is amplified into sinuous streaks (e.g., at
β = 1, the ratio of gains G2 is 1.1); however, varicose streaks have a much more stabilizing
structure than their sinuous counterparts (ratio of λ2r/||Q̃1||2 values 	50 for β = 1). Conversely,
the second suboptimal wall control (k = 3, not shown) induces a flow structure that is actually more
stabilizing than the varicose streaks, but experiences such a poor amplification that the net effect is
smaller. This suggests that optimizing for stabilization only might yield flow modifications requiring
impractically large control amplitudes and that optimizing for amplification and stabilization
simultaneously should be preferred.

2Recall λ = λ0 + ε2λ2 at second order.
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FIG. 9. Decomposition into amplification and stabilization: (a) gain G2 = ||Q1||2/||Uw||2 from wall control
to resulting flow modification and (b) growth rate reduction induced by unit flow modification (same data as
Fig. 3, normalized by the response norm ||Q1||2 rather than the control norm ||Uw||2). Optimal (k = 1) and first
suboptimal (k = 2) stabilizing wall control. Re = 50.

D. Three- and two-dimensional contributions

As mentioned in Sec. II B, the second-order eigenvalue variation resulting from a spanwise-
periodic control is the sum of two effects: from (i) the first-order flow modification Q1 and (ii) the
second-order flow modification Q2 [see also (19) and (27)]. Specifically, effect (i) is an interaction
between Q1 and the first-order eigenmode modification q1, both of which are spanwise periodic;
this contribution is therefore denoted the 3D contribution. Conversely, effect (ii) is an interaction
between the spanwise-invariant component of Q2 (mean flow correction Q2D

2 ) and the original
eigenmode q0; this contribution is therefore denoted the 2D contribution (not to be confused with
the eigenvalue variation that would be induced by a spanwise-uniform control).

Figure 10 shows these two contributions for optimal stabilizing controls. The optimal wall control
[k = 1, Fig. 10(a)] mainly has a stabilizing effect via its 3D contribution for small β. This contrasts
with the observations of Marant and Cossu [34] on the time-evolving parallel shear layer flow. As
β increases and the amplitude of the optimal streaks decreases (Fig. 7), the relative 2D contribution
increases and reaches 50% for β = 4. Surprisingly, the first suboptimal wall control (k = 2, panel
b) mainly has a stabilizing effect via its 2D contribution, while the 3D contribution is actually
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FIG. 10. The 3D contribution (−−, interaction between 3D fields Q1 and q1) and 2D contribution (− · −,
interaction between 2D fields Q2D

2 and q0) to the total growth rate variation (solid line) induced by (a) the
optimal (k = 1) and (b) first suboptimal (k = 2) stabilizing wall control Uw . Re = 50. See text for details.
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FIG. 11. Normalized effect on frequency of the optimal stabilizing wall control Uw . Re = 50.

destabilizing up to β � 2.5. Note how this destabilizing effect shifts the optimal wave number from
β = 1.5 (2D contribution only) to β = 2 (net effect). Two very different mechanisms can therefore
be distinguished: (i) varicose streaks stabilizing via their direct spanwise-periodic effect on Q1and
q1 and (ii) sinuous streaks stabilizing via their mean flow correction Q2D

2 .

E. Effect on frequency

It is important, in some applications, to know the overall effect of the optimal control. Figure 11
shows the effect on frequency (λ2i) of the control optimized for stabilization (λ2r < 0) discussed so
far in this Sec. IV. For all β values, the optimal stabilizing control is seen to induce a frequency
increase (λ2i > 0), smaller that the growth rate decrease. Interestingly, this frequency increase is
close to the optimal frequency increase, and the associated controls are similar, as will be seen in
Sec. VI.

We note that the effect in Fig. 11 is mainly due to the 3D contribution (not shown) and that the
first stabilizing suboptimal k = 2 induces a frequency decrease (not shown).

F. Simplified wall actuation

Figure 5 shows that the spanwise component of the optimal control is generally small compared
to the normal and tangential components. We now assess quantitatively the contributions of the
different velocity components by optimizing for simplified wall controls: namely in-plane [normal
and tangential components only, Uw = (Un,Ut , 0)T , no spanwise component W ], normal [Uw =
(Un, 0, 0)T ], or tangential [Uw = (0,Ut , 0)T ]. This is implemented by restricting the prolongation
operator P to the velocity components of interest (see Secs. II C 1 and II C 2).

Figures 12 and 13 show that the in-plane optimal control and normal optimal control are very
similar to the full 3D optimal control and lead to very similar eigenvalue variations. This implies
that Un is by far the most effective component, while W has a negligible effect.

Interestingly, purely tangential wall control is much less effective (Fig. 12), but the flow
modification induced downstream of the cylinder is qualitatively similar (not shown) to that in
Fig. 6(b), indicating that the optimal stabilizing mechanism is the creation of streamwise streaks,
irrespective of the velocity component(s) used as wall control.

Note that we have also evaluated λ2 by simply setting W = 0 or Ut = W = 0 a posteriori in
the full 3D optimal control (Un,Ut ,W )T and noticed only minor changes compared to the in-plane
optimal control and normal optimal control.
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FIG. 12. Normalized growth rate variation for several optimal stabilizing wall controls Uw: full 3D optimal,
in-plane optimal, normal optimal, tangential optimal. Also shown is the variation for the tangential wall control
equivalent to the optimal wall deformation R1 (see Sec. V). Re = 50, β = 1.

V. OPTIMAL WALL DEFORMATION FOR STABILIZATION

Wall deformation constitutes an interesting alternative to wall blowing and/or suction, in
particular thanks to a relatively easier implementation. We therefore consider spanwise-periodic
wall deformation R(θ, z) = R0 + εR1(θ, z) = R0 + εR̃1(θ ) cos(βz), as described in Sec. II D 2, and
compute the wall deformations that optimally stabilize or destabilize the leading eigenmode.

Focusing first on the optimal stabilizing wall deformation, we come back to Fig. 12 and observe
that the growth rate variation (green line) follows with β, a trend qualitatively similar to wall
actuation. In quantitative terms, the variation (normalized with respect to the equivalent wall
velocity) is close to that of the optimal tangential actuation (red line).

We now move to Fig. 14(a), where the optimal and first suboptimal growth rate variations at
Re = 50 are shown as function of the spanwise wave number β (now normalized with respect to wall
deformation). Similar to wall actuation (Sec. IV), several observations can be made: (i) The effect
of the optimal stabilizing wall deformation is decreasing with β, (ii) suboptimal stabilizing wall
deformations are much less efficient than the optimal one, and (iii) the potential for destabilization
is much smaller than that for stabilization.

As mentioned in Sec. II D 2, wall deformation affects the eigenmode (i) because it modifies the
base flow and (ii) because it displaces the no-slip boundary for the eigenmode. In order to compare
these two effects, we evaluate in (27) the relevant 3D contribution to λ2, namely,

λ3D
2 = (̃q†

0|Ã1q̃1), (52)

in two different ways: first, using the eigenmode modification q̃1 given by (25) with a no-slip
boundary condition on the undeformed cylinder; second, using q̃1,def calculated with the flattened
version of the no-slip boundary condition on the deformed cylinder, i.e.,

(λ0E + Ã0 )̃q1,def = Ã1,def q̃0 (53)

with a modified operator Ã1,def enforcing (49). Figure 14(b) shows the results for the optimal
stabilizing deformation R1: The solid line corresponds to the evaluation of (52) with q̃1, and the
dashed line is the difference between the evaluations with q̃1,def and q̃1. Since this difference is
negligible, one concludes that wall deformation has a much larger effect on λ2 via the base flow
modification than via the eigenmode’s boundary condition.

The optimal stabilizing wavy cylinder is shown in Fig. 15(a) at z = 0, together with the straight
circular cylinder for reference (dashed line). The geometry is top-down symmetric, and the wall
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FIG. 13. Optimal stabilizing Ũw normalized to 1: (a) full optimal 3D control, (b) in-plane optimal control,
and (c) normal optimal control. Re = 50, β = 1.

deformation is concentrated around |θ | = π/2, corresponding to successive thinning and thickening
of the vertical extent of the cylinder (recall that the deformation has opposite signs at z = 0 and
z = π/β). This optimal wavy cylinder is in good agreement with the shape found in Ref. [31] with
a different method, and without including the effect of the mean flow correction. Figure 15(b) shows
a “developed” view of the wall deformation as function of θ , as well as the leading-order equivalent
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FIG. 14. (a) Normalized growth rate variation induced by the optimal wall deformation R1 for stabilization
(λ2r < 0) and destabilization (λ2r > 0). Optimal (k = 1) and first suboptimals (k = 2, 3). Re = 50. (b) The
effect of wall deformation via the eigenmode’s boundary condition is much smaller than via the base flow
modification: evaluation of (52) with q̃1 (solid line), and difference between the evaluations with q̃1,def and q̃1

(dashed line). See text for details.

tangential wall actuation (46) which, at z = 0, consists of upstream blowing on either side of the
cylinder (around |θ | = π/2) and downstream blowing on the front region (around |θ | = 3π/4). This
contrasts with the tangential component of the optimal stabilizing wall actuation (Fig. 13), which is
oriented upstream over the whole cylinder, because in this latter case flow stabilization is also (and
prominently) achieved with the normal component.

The amplitude ε = 0.023 used in Fig. 15 is the amplitude needed to bring the flow back to
marginal stability, as illustrated in Fig. 16. Validations against 3D linear stability analysis show a
good agreement for both wall deformation and equivalent tangential actuation.

The first- and second-order flow modifications induced by the optimal wall deformation, shown
in Fig. 17, are sensibly similar to those induced by the optimal wall actuation [Fig. 6(b)], except for
a weaker (resp., stronger) mean flow correction on the symmetry axis y = 0 in the wake (resp., on
either side of the cylinder in the immediate vicinity of the walls).

Figure 18 shows that, similar to wall actuation (Fig. 8), the effect of wall deformation on both
the induced flow modification (as measured by the maximum energy density of Q1) and the leading
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FIG. 15. (a) Optimal wavy cylinder for stabilization. Radius R(θ ) = R0 + εR̃1(θ ) cos(βz) shown here at
z = 0, and with the amplitude ε = 0.023 that just brings the flow back to marginal stability. (Dashed line:
straight cylinder R = R0.) (b) Optimal wall deformation for stabilization (||R̃1|| = 1), and equivalent tangential
actuation. Re = 50, β = 1.
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FIG. 16. Effect of the optimal stabilizing wall deformation R1 on growth rate and frequency. Line,
sensitivity prediction; symbols, 3D stability analysis (circles •, wavy cylinder; squares �, equivalent tangential
blowing and/or suction). Re = 50, β = 1.

growth rate increases with Re, and the amplitude needed to stabilize the leading eigenvalue has a
maximum around Re 	 58.

VI. OPTIMAL WALL ACTUATION FOR FREQUENCY MODIFICATION

While stabilization is a major objective of flow control, the ability to alter vortex shedding
frequency is appealing in some applications too. Here we use our optimization method to control
the frequency of the leading eigenvalue (obtained in the present case from linear stability about the
base flow), which is close to the actual vortex shedding frequency at and slightly above the onset
of instability. Note that controlling the nonlinear frequency would require targeting the eigenvalue
obtained from linear stability about the mean flow [42,46], for instance, in the spirit of Ref. [47].

The frequency variation induced the by the optimal wall actuation is shown in Fig. 19. Over a
wide range of wave number β, it is easier to increase than to reduce the frequency. The optimal
frequency variation (in absolute value) is generally smaller than the optimal growth rate variation
(in absolute value) for β � 2.

In the range of relevant β values, the frequency variation (both positive and negative) is
mainly due to the 3D contribution for the optimal control k = 1. There is a significant 2D
contribution for the suboptimal k = 2; however, the total effect is much smaller than for k = 1

FIG. 17. First-order flow modification U1 = [Ũ1(x, y) cos(βz), Ṽ1(x, y) cos(βz),W̃1(x, y) sin(βz)]T (span-
wise periodic) induced by the optimal stabilizing wall deformation (or equivalent tangential wall control) at
Re = 50, β = 1. Left: vector fields (U1,V1)T at z = 0 and contours of W1 at z = π/(2β ). Middle: vector field
(V1,W1)T and contours of U1, at x = 2. Right: induced mean flow correction U2D

2 = [U 2D
2 (x, y),V 2D

2 (x, y), 0]T

(spanwise invariant), shown with vector field (U 2D
2 ,V 2D

2 )T and contours of velocity magnitude.
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FIG. 18. Variation with Reynolds number. (a) Normalized growth rate variation (in absolute value), and
maximum energy density, both for the flow modification induced by the optimal wall deformation for
stabilization. (b) Wall deformation amplitude εs = √λ0r/(|λ2r |/||Uw||2) necessary to fully stabilize the leading
eigenmode. β = 1.

(not shown). This is similar to the results for optimal control for stabilization and destabilization
(Sec. IV D).

Regarding the competition between amplification (from wall control to flow modification) and
normalized effect (frequency variation induced by a unit-norm flow modification), the optimal
control k = 1 is much more amplified than the first suboptimal k = 2 (up to two orders of
magnitude at β = 1.2), whereas the normalized effect is comparable for k � 3 (not shown). This
is fundamentally different from the results for optimal control for stabilization and destabilization
(Sec. IV C).

Figure 20 shows the effect on the growth rate of the wall actuation optimized for frequency
increase or reduction. In both cases, this effect is stabilizing. Interestingly, the wall actuation
optimized for frequency increase [Fig. 20(a)] has an effect almost as large as the optimal stabilizing
wall actuation (Fig. 3). The wall actuation optimized for frequency decrease [Fig. 20(b)] has
a substantially smaller effect. This can be explained by the distributions shown in Fig. 21: In
the former case, all velocity components are very similar to those of the optimal stabilizing
actuation [Fig. 5(b)], and therefore achieving quasioptimal stabilization. This is consistent with
the observations of Sec. IV E. In the latter case, the normal velocity component and to a lesser

0 1 2 3

0

50

100

0 1 2 3
-10

0

10

FIG. 19. Normalized frequency variation induced by the optimal wall actuation Uw for frequency increase
(λ2i > 0) and frequency reduction (λ2i < 0). Optimal (k = 1) and first suboptimals (k = 2, 3). Re = 50.
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FIG. 20. Normalized effect on growth rate of the optimal (a) frequency-increasing and (b) frequency-
reducing wall control Uw . 3D (−−) and 2D (− · −) contributions. Re = 50.

extent the tangential and spanwise components are similar to those of the first suboptimal stabilizing
actuation [Fig. 5(c)]. The actuation is top and bottom symmetric and antisymmetric, respectively,
and smoothly varying around the separation point in both cases. Finally, and as expected, the
induced flow modifications shown in Fig. 22 are very similar to those induced by the optimal and
first suboptimal stabilizing wall actuations [Figs. 6(b) and 6(c)].

VII. CONCLUSION

We use an adjoint method to compute the second-order sensitivity to small-amplitude control of
eigenvalues encountered in global linear stability analysis (i.e., solutions to the eigenvalue problem

(a)

(b)
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FIG. 21. Optimal (a) frequency-increasing and (b) frequency-reducing wall control Uw . Re = 50, β = 1.
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FIG. 22. First-order flow modification U1 = [Ũ1(x, y) cos(βz), Ṽ1(x, y) cos(βz),W̃1(x, y) sin(βz)]T (span-
wise periodic) induced by the optimal (a) frequency-increasing and (b) frequency-reducing wall control, at
Re = 50, β = 1. Left: vector fields (U1,V1)T at z = 0 and contours of W1 at z = π/(2β ). Middle: vector field
(V1,W1)T and contours of U1, at x = 2. Right: induced mean flow correction U2D

2 = (U 2D
2 (x, y),V 2D

2 (x, y), 0)T

(spanwise invariant), shown with vector field (U 2D
2 ,V 2D

2 )T and contours of velocity magnitude.

resulting from linearization of the Navier–Stokes equations). In 2D flows, spanwise-periodic control
has a zero net first-order (linear) effect, and therefore the second-order (quadratic) effect is the
leading effect. The sensitivity operator allows one to predict the effect of any small-amplitude
control on an eigenvalue, without actually computing the controlled flow. Further, we compute the
optimal control (the most effective control) for a variety of objectives: stabilization, destabilization,
and frequency modification. Apart from the quadratic approximation, our method is exact in that
it does not rely on a projection of the optimal control onto basis functions to keep the problem
tractable. Instead, we take advantage of the very spanwise-periodic nature of the control and reduce
tremendously the computational complexity from that of a fully 3D problem to that of a 2D problem.
As a result, the operator inversion involved when computing the sensitivity or the optimal control is
easily performed given the size of the 2D problem.

We apply the approach to the leading eigenvalue of the incompressible, laminar flow around
a circular cylinder. We consider three kinds of spanwise-periodic control: volume control (via a
body force), wall actuation (via blowing and/or suction), and wall deformation; we focus on the
latter two and give illustrative results. We optimize alternatively for the linear growth rate and
for the linear frequency, motivated by two different issues: stability of the leading eigenmode,
and linear frequency of this mode when unstable, respectively. Both issues are of interest in
vortex-induced vibrations, for instance, when the integrity of mechanical structures must be
guaranteed, or conversely when oscillations should be promoted for energy extraction. Applications
in aeroacoustics such as tonal noise are also relevant.

We find that sensitivity results are in good agreement with 3D validations (3D nonlinear
controlled base flow and its 3D linear stability analysis), within the range of control amplitudes
where quadratic effects are dominant. We also observe that among the two second-order effects
at play, the 3D contribution (related to the spanwise-periodic first-order flow modification Q1) is
generally larger than the 2D contribution (related to the mean flow correction, i.e., the spanwise-
invariant component Q2D

2 of the second-order flow modification Q2).
We show that, over a wide range of control spanwise wave number β, the optimal control for flow

stabilization is top-down symmetric and leads to varicose streaks in the cylinder wake, consistent
with previous observations. Conversely, the optimal control for flow destabilization is antisymmetric
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and leads to sinuous streaks. Symmetry alone cannot explain stabilization and/or destabilization: For
instance, the first suboptimal stabilizing control is antisymmetric. However, a detailed analysis of
the competition between amplification (from the cylinder to the wake) and stabilizing effect (of
the flow modification) provides more insight: In the stabilizing case, the optimal varicose streaks,
generated through an amplification of the same order as the optimal sinuous streaks, stabilize the
flow more efficiently.

Regarding wall blowing and/or suction, spanwise actuation has a negligible contribution to
the optimal control; therefore, in-plane actuation (Un,Ut , 0)T is practically optimal. Tangential
actuation has a non-negligible but significantly smaller contribution too; therefore, normal-only
actuation (Un, 0, 0)T is a good trade-off between simplicity and effectiveness.

Regarding wall deformation, the optimal stabilizing deformation (and the equivalent tangential
blowing and/or suction) induces a flow modification very similar to that induced by the optimal wall
actuation.

Our method is applicable to any other 2D flow and can easily be extended to axisymmetric flows.
We expect it to produce interesting results in flows where spanwise-periodic (or azimuthal-periodic)
control has received less attention than bluff-body wakes. The extension of this approach to a variety
of other control objectives (e.g., aerodynamic forces, non-normal amplification and/or nonmodal
stability, flow geometry, etc.) is worth investigating and bears great promise for the systematic
design of efficient control techniques.

APPENDIX A: GENERAL SECOND-ORDER SENSITIVITY

The second-order eigenvalue variation λ2 can be evaluated from (27) for a given control (wall
deformation R1, wall actuation Uc, or volume control C), provided the induced flow modifications
Q1 and Q2 are computed with (14).

Interestingly, λ2 can also be evaluated directly as a simple scalar product between the control and
a second-order sensitivity operator. This sensitivity operator is independent from the control (and
thus needs only be computed once, irrespective of the number of specific control configurations
considered); furthermore, it does not require computing the induced flow modifications Q1 and Q2.

Recall the expression (27) of the second-order eigenvalue variation,

λ2 = ((q†
0|−A2q0)) + ((q†

0|A1(λ0E + A0)−1A1q0)) (A1)

= ((q†
0|−A2q0)) + ((A†

1q†
0 | (λ0E + A0)−1A1q0)), (A2)

where A†
1 is the adjoint of A1 [recall the general definition (22)]. We introduce linear operators L

and M that depend only on q0 and q†
0 such that

A1q0 =
[

U1 · ∇u0 + u0 · ∇U1 0

0 0

]
= LQ1, (A3)

A2q0 =
[

U2 · ∇u0 + u0 · ∇U2 0

0 0

]
= LQ2, (A4)

A†
1q†

0 =
[
−U1 · ∇u†

0 + u†
0 · ∇UT

1 0

0 0

]
= MQ1. (A5)

Substituting into (A2) yields

λ2 = ((q†
0|−LQ2)) + ((MQ1|(λ0E + A0)−1LQ1)) (A6)

= ((L†q†
0 | −Q2)) + ((Q1|M†(λ0E + A0)−1LQ1)), (A7)
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where we have introduced the adjoint operators

L† =
[

() · ∇uH
0 − u0 · ∇() 0

0 0

]
, M† =

[
−() · ∇u†

0 − () · ∇u†
T

0 0

0 0

]
(A8)

(recall that the overbar stands for the complex conjugate). The first term is rearranged by making
use of (16):

λ2 = ((L†q†
0|A−1

0 (U1 · ∇U1, 0)T )) + ((Q1|M†(λ0E + A0)−1LQ1)) (A9)

= ((Q†|(U1 · ∇U1, 0)T )) + ((Q1|M†(λ0E + A0)−1LQ1)), (A10)

where the field Q† = (U†, P†)T is a solution of

A†
0Q† = L†q†

0. (A11)

Since the first term is linear in Q† and quadratic in Q1, we define another linear operator

K =
[

U† · ∇()T 0
0 0

]
(A12)

such that ((Q†|(U1 · ∇U1, 0)T )) = ((Q1|KQ1)), (A13)

which allows us to obtain the following expression for the second-order eigenvalue variation:

λ2 = ((Q1 | KQ1)) + ((Q1|M†(λ0E + A0)−1LQ1)). (A14)

Finally, the total second-order sensitivity to flow modification is

S2,Q1 = K + M†(λ0E + A0)−1L, such that λ2 = ((Q1|S2,Q1 Q1)). (A15)

From the sensitivity to flow modification (A15), one can derive the sensitivity to control. Let us
define the prolongation operator P from velocity-only space to velocity-pressure space such that
PU = (U, 0)T and U = PT (U, 0)T . The second-order sensitivity to volume control reads

S2,C = PT A†
0,C

−1
S2,Q1 A0,C

−1P, such that λ2 = ((C | S2,CC)). (A16)

where A0,C is defined by the volume-control-only (no wall control, Uc = 0) version of (15):

A0,CQ1 = (C, 0)T = PC in �, U1 = 0 on �. (A17)

Likewise, the second-order sensitivity to wall actuation reads

S2,Uc = PT A†
0,Uc

−1
S2,Q1 A0,Uc

−1P, such that λ2 = 〈〈Uc

∣∣S2,Uc Uc
〉〉
, (A18)

where A0,Uc is defined in this case by the wall-actuation-only (no volume control, C = 0) problem:

A0,Uc Q1 = 0 in �, U1 = Uc on �. (A19)

APPENDIX B: SPANWISE-PERIODIC SENSITIVITY, SIMPLIFICATION TO A 2D PROBLEM

The second-order sensitivity operators (A16) and (A18) depend on the spanwise coordinate z
via the spanwise-periodic flow modification Q1. We now derive reduced z-independent, yet exact,
expressions of the sensitivity operators. As detailed below, this expression makes it possible to
evaluate the eigenvalue variation λ2 and determine the optimal spanwise-periodic controls C and Uc

using only 2D fields, making these operations significantly more computationally affordable than
with 3D fields.
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We consider, without loss of generality, the following harmonic wall forcing on � and harmonic
volume forcing in �:

Uc(x, y, z) =

⎛⎜⎝Ũc(x, y) cos(βz)

Ṽc(x, y) cos(βz)

W̃c(x, y) sin(βz)

⎞⎟⎠, C(x, y, z) =

⎛⎜⎝C̃x(x, y) cos(βz)

C̃y(x, y) cos(βz)

C̃z(x, y) sin(βz)

⎞⎟⎠. (B1)

This might seem more restrictive than

Uc(x, y, z) = Ũc
c(x, y) cos(βz) + Ũs

c(x, y) sin(βz), (B2)

C(x, y, z) = C̃c(x, y) cos(βz) + C̃s(x, y) sin(βz) (B3)

(or an equivalent complex formulation), but this is actually not the case, as will be touched upon
later in this section. With the spanwise-harmonic control (B1), the flow response at first order ε1 is

Q1 =

⎛⎜⎜⎜⎝
Ũ1(x, y) cos(βz)

Ṽ1(x, y) cos(βz)

W̃1(x, y) sin(βz)

P̃1(x, y) cos(βz)

⎞⎟⎟⎟⎠, (B4)

and the first-order problem A0Q1 = (C, 0)T can be rewritten in the reduced form Ã0Q̃1 = (C̃, 0)T ,

where

Ã0 =

⎡⎢⎢⎢⎣
U0∂x + V0∂y + ∂xU0 − D̃ ∂yU0 0 ∂x

∂xV0 U0∂x + V0∂y + ∂yV0 − D̃ 0 ∂y

0 0 U0∂x + V0∂y − D̃ −β

∂x ∂y β 0

⎤⎥⎥⎥⎦, (B5)

D̃ = Re−1(∂xx + ∂yy − β2). (B6)

Next, we note that the forcing term of the problem A0Q2 = (−U1 · ∇U1, 0)T is the sum of a 2D
term (wave number 0) and a 3D term (wave number 2β):

−U1 · ∇U1 = f2D(x, y) + f3D(x, y, z), (B7)

f2D = −1

2
(Ũ1∂x + Ṽ1∂y − βW̃1)

⎛⎜⎝Ũ1

Ṽ1

0

⎞⎟⎠, (B8)

f3D = −1

2
(Ũ1∂x + Ṽ1∂y + βW̃1)

⎛⎜⎝Ũ1 cos(2βz)

Ṽ1 cos(2βz)

W̃1 sin(2βz)

⎞⎟⎠. (B9)

At second order ε2, the flow response can therefore be decomposed into the response to each of the
above two forcing terms:

Q2 = Q2D
2 (x, y) + Q3D

2 (x, y, z), (B10)

A0Q2D
2 = (f2D, 0)T , A0Q3D

2 = (f3D, 0)T . (B11)
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The 2D response Q2D
2 (x, y) = (U 2D

2 ,V 2D
2 , 0, P2D

2 )T can also be written as a solution of the reduced
equation Â2D

0 Q2D
2 = (f2D, 0)T , with purely 2D operators:

Â2D
0 =

⎡⎢⎢⎢⎣
U0∂x + V0∂y + ∂xU0 − D̂ ∂yU0 0 ∂x

∂xV0 U0∂x + V0∂y + ∂yV0 − D̂ 0 ∂y

0 0 0 0

∂x ∂y 0 0

⎤⎥⎥⎥⎦, (B12)

D̂ = Re−1(∂xx + ∂yy). (B13)

The 3D forcing term induces a 3D response Q3D
2 that is a solution of A0Q3D

2 = (f3D, 0)T and that
is z periodic of wavelength π/β. Therefore, its contribution to λ2 = ((q†

0|−A2q0 + . . .)) in (27)
will average out to zero. In other words, the contribution of Q2 only comes from the mean flow
correction Q2D

2 , not from the harmonic field Q3D
2 .

Finally, for spanwise-periodic control, the second-order sensitivity operator (A15) reduces to

S̃2,Q̃1
= K̃ + M̃†(λ0E + Ã0)−1L̃, such that λ2 = (Q̃1

∣∣̃S2,Q̃1
Q̃1
)
, (B14)

where

L̃ = L, M̃† = M†, K̃ =

⎡⎢⎢⎢⎢⎢⎣
Ũ †∂x Ṽ †∂x 0 0

Ũ †∂y Ṽ †∂y 0 0

−βŨ † −βṼ † 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦, (B15)

Q̃† = (Ũ †, Ṽ †, 0, P̃†)T is a solution of Â2D†
0 Q̃† = L̃†q†

0. (B16)

Similarly, the second-order sensitivity operators (A16) and (A18) reduce to

S̃2,C̃ = PT Ã†
0,C

−1
S̃2,Q̃1

Ã0,C
−1

P, such that λ2 = (C̃|̃S2,C̃C̃), (B17)

S̃2,Ũc
= PT Ã†

0,Uc

−1
S̃2,Q̃1

Ã0,Uc

−1
P, such that λ2 = 〈 Ũc

∣∣̃S2,Ũc
Ũc
〉
. (B18)

Coming back to the specific choice of (B1) as a control, detailed calculations show that using (B2)
and (B3) instead does not affect the results, as far as the second-order eigenvalue variation (27) is
concerned. Indeed, the two control fields⎛⎜⎝Ũ c

c (x, y) cos(βz)

Ṽ c
c (x, y) cos(βz)

W̃ s
c (x, y) sin(βz)

⎞⎟⎠ and

⎛⎜⎝ Ũ s
c (x, y) sin(βz)

Ṽ s
c (x, y) sin(βz)

W̃ c
c (x, y) cos(βz)

⎞⎟⎠ (B19)

do interact in λ2 through quadratic terms such as U1 · ∇U1 and A1q1; however, this interaction
induces new terms that do not affect λ2, (i) either because they are spanwise periodic and
average out, (ii) or because they appear on z components and cannot contribute in ((q†

0|A2q0))
and ((q†

0|A1q1)) since q0 and q†
0 are 2D (spanwise invariant, no spanwise component). In other

words, the two fields (B19) contribute independently to λ2. Looking for an optimal control with the
additional degrees of freedom (B2) and (B3) returns the same field twice (up to sign differences),
and therefore optimizing for (B1) is sufficient.

Of course, it is still possible to actually implement a control of the form (B2) and (B3), or
a similar form for the radius R1 in the case of wall deformation. In particular, this allows the
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implementation of a “helical” control or deformation. Indeed, a “traveling wave” in (z, θ ) can be
decomposed as the sum of two different “varicose” controls or deformations (“standing waves”):⎛⎜⎝U cos(βz + mθ )

V cos(βz + mθ )

W sin(βz + mθ )

⎞⎟⎠ =

⎛⎜⎝U cos(mθ ) cos(βz)

V cos(mθ ) cos(βz)

W cos(mθ ) sin(βz)

⎞⎟⎠+

⎛⎜⎝−U sin(mθ ) sin(βz)

−V sin(mθ ) sin(βz)

W sin(mθ ) cos(βz)

⎞⎟⎠

=

⎛⎜⎝Ũ c
c (θ ) cos(βz)

Ṽ c
c (θ ) cos(βz)

W̃ s
c (θ ) sin(βz)

⎞⎟⎠+

⎛⎜⎝ Ũ s
c (θ ) sin(βz)

Ṽ s
c (θ ) sin(βz)

W̃ c
c (θ ) cos(βz)

⎞⎟⎠, (B20)

R cos(βz + mθ ) = R cos(mθ ) cos(βz) − R sin(mθ ) sin(βz)

= R̃c
1(θ ) cos(βz) + R̃s

1(θ ) sin(βz). (B21)

However, because at least one of the two varicose controls or deformations is not the optimal control
or deformation (for instance, R̃c

1 differs necessarily from R̃s
1), the resulting λ2 will necessarily be

suboptimal, i.e., smaller than the optimal λ2 obtained with the optimal control or deformation of the
same norm.

APPENDIX C: OPTIMIZATION

On a technical note, reduced 2D second-order sensitivity operators (B17) and (B18) involve
several inversion operations; therefore, although much smaller that their full 3D counterparts S2,∗,
in practice the operators S̃2,∗ are never formed explicitly. Instead, the eigenvalue problems (41), (42),
etc. are solved iteratively by evaluating matrix-vector products (i.e., computing the action of
operators on vectors) and solving linear systems of equations. Specifically, operators Ã0, Ã†

0, K̃, L̃,

FIG. 23. (a) The 2D sensitivity of the leading eigenvalue’s growth rate to 2D (spanwise-invariant) volume
control (arrows show the x and y components, while the z component is zero by definition). (b) Optimal
stabilizing spanwise-periodic volume control C at Re = 50, β = 1. Left, right: cuts at z = 0 and x =
2, respectively, showing the in-plane vector field and contours of the out-of-plane component. (c) Flow
modification induced by the optimal stabilizing volume control of panel b. Left, middle: first-order modification
U1(x, y, z) (spanwise harmonic) at z = 0 and x = 2, respectively, shown with in-plane velocity vector fields
and contours of out-of-plane velocity. Right: induced mean flow correction U2D

2 = [U 2D
2 (x, y),V 2D

2 (x, y), 0]T

(spanwise invariant), shown with vector field (U 2D
2 ,V 2D

2 )T and contours of velocity magnitude.
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M̃†, etc., are first built with FREEFEM++ and subsequently imported in MATLAB, where lower-upper
(LU) decompositions of the operators to be inverted (Ã0, λ0E + Ã0, etc.) are performed once for
all before solving the eigenvalue problems. During the eigenvalue problem resolution, whenever
evaluating the action of S̃2,∗ on a vector x is needed, the action of inverse operators is computed
by substitution using the triangular LU factors (i.e., for instance, if Ã0 = LAUA, then the vector
y = Ã−1

0 x = U−1
A L−1

A x is computed by solving LAz = x for z, and UAy = z for y).
Note, however, that the need to take the real or imaginary part and actually compute S̃2,∗,rx or

S̃2,∗,ix rather than S̃2,∗x is not straightforward since the operator S̃2,∗ is not formed explicitly. This
is circumvented by noting that the following relations hold:

S̃2,∗,rx = 1

2
(̃S2,∗x + S̃2,∗x), S̃T

2,∗,rx = 1

2

(̃
ST

2,∗x + S̃T
2,∗x
)
, (C1)

S̃2,∗,ix = 1

2i
(̃S2,∗x − S̃2,∗x), S̃T

2,∗,ix = 1

2i

(̃
ST

2,∗x − S̃T
2,∗x
)
. (C2)

Using these relations, one only needs to evaluate matrix-vector products (and vector complex
conjugates), rather than evaluating the real and imaginary part of operators.

APPENDIX D: OPTIMAL VOLUME CONTROL FOR STABILIZATION

For the sake of completeness, we briefly comment here on volume control for stabilization.
Figure 23(b) shows the optimal volume control for β = 1. Interestingly, the x and y components
are reminiscent of the 2D growth rate sensitivity (Fig. 23(a); see also [23]), suggesting that similar
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FIG. 24. [(a)–(d)] The 3D eigenvalues of the uncontrolled 2D base flow: [(a), (b)] growth rate vs spanwise
wave number (circles, unsteady eigenmodes ω �= 0; crosses, steady eigenmodes ω = 0); [(c), (d)] growth rate
vs frequency (closeup of the leading eigenvalue). [(a), (c)] Re = 80; [(b), (d)] Re = 50. (e) Minimum distance
in the complex plane (σ, ω) from 3D eigenvalues (β0 > 0) to the 2D leading eigenvalue (β0 = 0). In all panels,
spanwise wave numbers β0 = 0, 0.4, and 0.6 are shown in black, red and blue, respectively.
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flow regions are sensitive to control and are involved in similar stabilization mechanisms. This
is remarkable, considering that the spanwise-harmonic optimal control is harmonic in z and is
therefore alternatively similar to the optimal stabilizing [at z = 2nπ/β, like in Fig. 23(b)], and
similar to the optimal destabilizing 2D control [at z = (2n + 1)π/β].

The flow modification [Fig. 23(c)] induced by the optimal stabilizing spanwise-periodic volume
control has a spatial structure very similar to that of the flow modification induced by the optimal
stabilizing wall control [Fig. 6(b)]. This suggests that optimal stabilizing varicose streaks are a
robust feature of the cylinder flow.

APPENDIX E: SMALL-β LIMIT

Figure 24 shows the 3D eigenvalues of the uncontrolled 2D flow at two different Reynolds
numbers, Re = 50 and 80, calculated for small-amplitude perturbations of the form q(x, y)eiβ0zeλt

(numerical method similar to that described in Sec. III A). As the spanwise wave number β0

increases, the leading unstable eigenmode can be followed continuously. Along this branch, the
growth rate and frequency decrease. The minimal distance d from all 3D eigenvalues to the 2D
leading eigenvalue increases with β0 (approximately like β2

0 ) and takes sensibly the same values for
Re = 50 and 80, as shown in Fig. 24(e). Because of the requirement ε < d for the expansion (13)
to remain valid, this curve gives the maximal control amplitude ε allowed for a given control wave
number β (or equivalently the minimal β allowed for a given ε). For instance, at Re = 50, one can
read ε � 0.035 for β = 0.4, ε � 0.075 for β = 0.6, and ε � 0.185 for β = 1.
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