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Abstract Experimental results are presented on the tran-
sition to turbulence of a plane Couette flow locally and
permanently forced by a small bead. The intermittent as-
pect of this transition is investigated in a detailed analysis
of the transition periods from coherent to turbulent and
vice versa. A maximum number of transitions are achieved
at a Reynolds number of about 310. It is shown that the
breakdown of the flow coherence results from a complex
succession of events occurring as follows. A secondary
instability takes place leading to a drift of at least one
vortex pair away from the excitation source. Consequently,
the flow in the bead vicinity is laminar and a vortex pair is
generated. Turbulence results from the interaction be-
tween the newly born vortex and the one already active. As
the fluctuation intensity decreases all over the flow, the
laminar state is recovered in the bead vicinity from which
two vortex pairs are regenerated. The second main con-
tribution of this paper is the study of the turbulent state
using spatio-temporal correlation. The role of lateral
streaks and their properties in the turbulent state are in-
vestigated. It is demonstrated that the turbulent spot is
sustained by a vortex generation near the source followed
by convection towards the boundaries. In both coherent
and turbulent states, the flow near the bead is found to
determine the plane Couette flow evolution.

1
Introduction
Plane Couette flow (pCf) has received much attention
mainly because of the apparent early discrepancy between
theory and experiment. While, it was demonstrated that

pCf is linearly stable for all Reynolds numbers (Darzin and
Reid 1981), experimental investigations showed that tur-
bulence appears at finite Reynolds numbers (Re) of less
than 750 indicating that Couette flow is unstable for finite
disturbances (Reichert 1956). Leutheusser and Chu (1971)
using air with one fixed wall found a critical Reynolds
number Rc=280.

The first finite-amplitude solutions of a pCf were ob-
tained by Nagata (1990) at Re‡500. He considered the
problem of a circular Couette system between co-rotating
cylinders with a narrow gap. By following a series of bi-
furcation to the case with zero average rotation rate, he
succeeded in determining steady solution in the form of
co-flow modulated rolls. Later, these solutions were found
unstable by Clever and Busse (1992). Recent investigations
by Schmiegel and Eckhardt (1997) suggest that a chaotic
repeller could underline the transition to turbulence and
thus explain the unstable character of Nagata’s solutions.
In parallel to Nagata’s work, several researchers (Butler
and Farrell 1992; Farrell and Ioannou 1993; Trefethen et al.
1993; Schmid and Henningson 1992) emphasized the role
of non-normality of the linear operator in the transition to
turbulence. They considered the linearized Navier–Stokes
incompressible equations of motion and obtained, in ad-
dition to the Orr–Sommerfeld equation, another equation
describing the evolution of wall normal vorticity. Ac-
cordingly, the linear coupling between wall normal vor-
ticity and the wall normal velocity could lead to an
algebraic growth of the instability at Reynolds number
much smaller than those predicted by the eigenvalue
analysis. This is done by extraction of energy from the
mean flow by structures such as streamwise vortices. A
different approach based on extracting the mechanisms
that sustain turbulence was performed by Waleffe (1995,
1996, 1998), and Hamilton et al. (1995). The model is
based on a fundamental self-sustaining non-linear process
consisting of an instability loop, according to which weak
streamwise rolls disturb the streamwise velocity. The
resultant inflections open up the possibility for three-
dimensional fluctuations to develop, and the instability
feeds back the energy to the original streamwise strolls. In
this approach, it is the turbulent solution that is tracked
instead of a fixed point as in Nagata’s case. A comparison
among the various models of subcritical transition to
turbulence can be found in Baggett and Trefethen (1996).

On the other hand, the first numerical experiments
performed by Orszag and Kells (1980) obtained a transi-
tion to turbulence at Re�1,000 where the essential three-
dimensional effects were included. However, in this work
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no systematic search in the parameter space was per-
formed so the critical Reynolds number should be con-
sidered as an upper limit value. Later, Lundbladh and
Johansson (1991) performed a rather comprehensive nu-
meric study of the pCf transition to turbulence and ob-
tained a critical Reynolds number of about 375. They
characterized the spots observed in the turbulent regime
as a function of the Reynolds number. Tillmark and
Alfredsson (1992) confirmed these results by triggering the
transition by a high-amplitude pointwise disturbance
generated by a fluid jet; they found Rc=360.

Recently, dedicated experiments on perturbed pCf have
been conducted where a turbulent jet destabilized the pCf
flow locally (Daviaud et al. 1992; Dauchot and Daviaud
1994). Their results on the critical Reynolds number
roughly agree with those of Tillmark and Alfredsson
(1992), that is Rc�330. Later, they induced a perturbation
with a thin wire (Dauchot and Daviaud 1995) allowing
them to reveal the existence of streamwise vortices in-
volved in the destabilization process. With increasing
Reynolds number, three regimes were identified, laminar
(Re<160), streamwise vortices (160<Re<340), and turbu-
lent (Re>340). They emphasized the coexistence of the
stable and turbulent states describing the flow as subcrit-
ical. This description is in contrast to a supercritical sit-
uation where a continuous transition from laminar to
turbulence occurs; an example of this transition is found
in Rayleigh–Bénard flows (Manneville 1990). A compre-
hensive analysis of the perturbed pCf was performed by
changing the wire diameter Re and the aspect ratio in
(Bottin et al. 1998). A different perturbation later used a
small bead attached to a thin wire in the streamwise di-
rection (Bottin et al. 1997). The intermittent transition was
characterized as function of Re via the turbulence fraction,
the laminar periods and turbulence duration. Recently, a
dedicated three-dimensional numerical experiment by
Barkley and Tuckerman (1999) studied pCf perturbation
by a thin ribbon with different heights. They confirmed the
subcritical aspect of the transition by computing the linear
instability threshold of the modified basic flow. Most of
their results showed good agreement with experiment.

In this paper, the same experimental setup described in
(Bottin et al. 1997) is used, that is, a pCf locally and per-
manently perturbed by a small bead. The motivation of
using this setup is to help understanding the nature of the
intermittent transition to turbulence of a locally forced
pCf. The first part of this paper is dedicated to the de-
scription of the transition periods from the coherent to the
turbulent state and vice versa. For this purpose, the Rey-
nolds number is hereafter fixed at 310 where 60% of the
data is turbulent so a maximum amount of transitions is
present (Bottin et al. 1997). Our goal is to identify exper-
imentally the bifurcations that lead to the intermittent
transition to turbulence. This investigation can be put in
the general framework of the various routes that laminar
flows can take to become turbulent through different bi-
furcations with increasing control parameter. According to
Landau, turbulent fluctuations result from infinite linear
instabilities (Har 1965). Ruelle and Takens (1971), on the
other hand, demonstrated that turbulence can be achieved
much faster by non-linear interaction between the first few

excited modes. This theory opened perspectives to a whole
family of non-linear transitions to turbulence, namely by
intermittency (Ott 1990). In addition, linear instabilities
with non-normal contributions also describe a transition
to turbulence of sheared flows (Trefethen et al. 1993). The
first identified is the instability of a fixed point in the
Poincarré map leading to intermittent transitions of types
I, II, and III (Manneville and Pomeau 1980; Manneville
1990). Another type of intermittency is caused by ‘‘crises’’
where the initial state is one or several chaotic attractors
that undergo changes (see Ott (1990) and references
therein). Spatio-temporal intermittent transition was also
identified resulting from a competition between a regular-
absorbing and a chaotic metastable state Chaté and
Manneville (1987).

In this paper we find that the intermittent transition
results from different states. First, there is a basic state
formed of two stable streamwise counter-rotating vortices
– this is the streamwise vortices state identified in Dauchot
and Daviaud (1995). The appearance of a perpendicular
instability to the mean flow drives at least one of the
vortices towards the boundary. In consequence, the flow in
the vicinity of the bead is laminar and a vortex is gener-
ated. The interaction between the newly born streamwise
vortex and the deviated one causes their coherence
breakdown and the appearance of small-scale fluctuations.
The stable state is restored when the fluctuations around
the bead die away. The flow becomes laminar again before
two stable streamwise counter-rotating vortices are born.

The second part of this work is the study of the tur-
bulent state. The main finding is that the bead still con-
tinuously excites this state. The resultant fluctuations,
which form the turbulent spot, result from a convection
process of the fluctuations towards the boundaries. The
goal here is thus to quantify these mechanisms that sustain
the flow in the turbulent state using a spatio-temporal
correlation technique.

2
Experimental facilities
The pCf is a simple shear flow formed by two plates
moving in opposite directions. More information about
the apparatus can be found in Daviaud et al. (1992) and
Dauchot (1995). As illustrated in Fig. 1, x indicates the
flow direction, the direction normal to the wall is y, and

Fig. 1. Illustration of the experimental set-up
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the spanwise direction is z. The bead is fixed onto the
supporting wire, and its position is chosen to be the
reference frame origin. The gap between the two plates is
2h=7 mm. The sheared zone extends over an area with
aspect ratios Gx=Lx/h=285 and Gz=Lz/h=70. The flow is
perturbed permanently by a small sphere with radius
r/h=0.35 placed in the central plane and attached to a
thin wire, which is also in the central plane and parallel to
the x direction.

The Reynolds number is defined as Re=Uh/m, where U
is the speed of either walls and m is the kinematic viscosity
of water; Re in this paper is equal to 310 with an accuracy
about 3%. It is chosen by consideration of the results
obtained in Bottin et al. (1997) where turbulent bursts
occupy about 60% of the total data string, and thus a
maximum of transition periods is available.

Two types of signals are used in this paper. The spatio-
temporal diagrams are obtained when water is seeded with
iriodin and lit up with a 1 mm thick argon laser sheet in
the (x, y�0, z) plane. From the reflected light intensity,
detected by a CDD camera perpendicular to the laser sheet,
the flow evolution at x/h=5.4 away from the bead is ex-
tracted. We denote by i(z, t) the resultant spatio-temporal
diagram, the sampling frequency being 0.2 Hz. Other in-
formation is obtained using photographs taken in the
(x�0, y, z) plane after the flow is colored by yellow dye and
illuminated by a laser sheet. Such photographs reflect the
spatio-temporal dynamics related to vorticity at a given
position to the bead.

The basic features of this perturbed pCf were discussed
in Bottin et al. (1997), where it was indicated that it has
similar aspects as the one produced by a thin wire or a
fluid jet. The velocity profile is also similar to the one
obtained with the wire perturbation where the deviation
from a linear profile is observed at |y/h|<0.2 and at dis-
tances downstream |x/h|<13.

3
Intermittent transitions
When the Reynolds number is less than R0�105, the
perturbed pCf is laminar and the perturbation induced by
the bead does not disturb its motion. This state is said to
be ‘‘unconditionally stable’’, and R0 is a global stability
threshold Reynolds number (Dauchot and Manneville
1997). When R0 £ Re £ R1�300, pairs of counter-rotating
vortices aligned in the x direction are observed. A primary
supercritical instability of the system occurred leading to a
three-dimensional coherent and stationary flow regime,
hereafter called the coherent state.

The generated vortex pairs are symmetric and anti-
symmetric with respect to the (x, y) and the (y, z) planes
respectively (Bottin et al. 1997). The (y, z) photograph in
Fig. 2 shows the flow circulation induced by the dissipative
structure vorticity. It reveals the existence of at least two

pairs of counter-rotating vortices on each side of the z
axis. Their intensity, estimated as the amount of diffused
light by the dragged dye, decreases with increasing dis-
tance to the bead.

Using the spatio-temporal diagrams, the positions of
the two closest vortex pairs to the bead are measured
each time the coherent state is recovered after a turbulent
burst. The plot in Fig. 3 shows their distribution in light
gray. The left- and right-hand average positions are
respectively at –4.5h and +6h from the origin. The two
distributions are thus symmetric with respect to a
distance to the bead of about zs/h�+0.8. The cause of this
asymmetry with respect to the origin is still not clearly
identified. However, as it will be seen later, the flow
properties are symmetric with respect to this position,
strongly suggesting that this asymmetry does not affect
the destabilization and stabilization process. Further-
more, the asymmetry of the two counter-rotating vortices
occurs in the z direction. Hence, the bead is always in the
shear zone where the average velocity is zero, and the
Reynolds number based on the bead is unchanged by this
asymmetry.

The goal of this section is to describe in detail how the
coherent state becomes unstable and how it regains its
stability. By intermediate ranges, we designate lapses of
time, which immediately follow or precede the turbulent
bursts. The spatio-temporal diagrams used here are rather
noisy because of the random presence of iriodin in the
flow. In order to remedy to this problem, and so to em-
phasize the dynamics of the structure, a two-dimensional
filter is applied

I z; tð Þ ¼ uaz
zð Þ � uat

tð Þ;

where

wat
tð Þ ¼

Z
dt0/

t0 � t

at

� �
i z; t0ð Þ and

waz
zð Þ ¼

Z
df/

f� z

az

� �
i f; tð Þ:

The choice of the Gaussian function / is based on the
type of light fluctuations that are recorded when the flow is
in the turbulent state. In the coherent state no filtering is
required to emphasize the dynamics of the structure. This
filter is inspired by the wavelet transform filtering tech-
nique but it does not obey the conditions

R
dt/ tð Þ ¼ 0 orR

dz/ zð Þ ¼ 0. The parameters az and at are varied between
5 and 100 mm, and 2 to 20 s respectively. The values
10 mm (2.9h) and 6 s correspond to the typical scales of
the fluctuations, thus, revealing best the dissipative
structure properties. After filtering, a threshold is set be-
low which the signal intensity is not plotted allowing the
evolution of the structures to be emphasized. A sample of
the signal is plotted in Fig. 4 where the flow is in the

Fig. 2. A (y, z) section of the
coherent state. On each side of
the bead, visible at the middle of
the picture, there exist at least
two vortex pairs
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turbulent state. In the subplot below, the filtered version is
sketched. The result is more than satisfactory where the
turbulent structure signal is enhanced without modifying
its spatio-temporal properties.

3.1
Breakdown of the coherent state
At the Reynolds number studied here, Re=310, the flow is
intermittent, staying in the coherent state for some time,
then becoming turbulent and then coherent, etc. The issue
of whether the positions of the vortex pairs in the coherent
state is important in the breakdown process is investigated
by recording the distance from the vortices to the origin
that correspond to the shortest coherent periods in the
intermittent signal. The distribution of such events is
plotted in Fig. 3 in dark gray. The breakdown does not
appear to be caused by eccentric positions of the vortex

pairs in the coherent state. It is also verified that there is
no statistical difference between distances to the bead
before and after the turbulent bursts. Accordingly, the
vortex-pair positions in the coherent state correspond to a
stable state and they do not cause the intermittent flow
behavior.

After investigating all of the data strings where a
coherent–incoherent transition occurs, two consecutive
steps were identified in the breakdown of the coherent
state. In Fig. 5, two selected examples of the filtered spatio-
temporal diagram are sketched.

Just before the coherence breakdown of the vortex
pairs, the distance of at least one of them with respect to
the origin increases. This pre-breakdown state starts up
at times of about 600 and 500 s in Fig. 5a and b
respectively. The vortex pair on the negative side of z
drifts away from the bead before recovering a direction
parallel to x!.

In order to verify that the drift away from the bead
occurs in nearly all the transitions observed, the positions
of the vortex pairs before the pre-breakdown period (de-
noted by z+,–) and at its end (z¢+,–) are recorded; the in-
dices + and – denote positive and negative sides of the z
axis. In Fig. 6a, z¢+ is plotted against z+, and the solid line
represents z+ against z+ in order to put forward the de-
viation position. In Fig. 6b, the same thing is shown for
negative z. On both sides, the vortex pairs in general de-
viate from the coherent state values. The drift away from
the bead displayed in Fig. 5 is thus statistically confirmed.
Moreover, the few points indicating a shift towards the
bead are caused by situations where the vortex pairs on
both sides of the bead drift in the same direction. In this
case, the left-hand vortex (say) records a shift towards the
wall where the right-hand one produces the opposite be-
havior.

At this stage of evolution, two possibilities can occur:
either the vortex pairs break down leading to turbulence
(Fig. 6a), or they return to their initial position (Fig. 6b).
The second case is particularly interesting because it

Fig. 3. The probability density of the vortex-pair positions (gray) and
positions corresponding to the shortest durations of the coherent
state between two turbulent bursts (dark gray)

Fig. 4. A sample of the spatio-temporal
diagram showing the locally forced pCf in
the turbulent state (top), the filtered spatio-
temporal diagram (bottom)
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enables us to have a clearer image of the nature of the
instability. The deviated vortex pair goes back to its
initial position and drifts away again revealing an oscil-
lation in the (x, z) plane caused by a secondary insta-
bility. When a vortex pair is relatively far from the bead,
the flow in the vicinity of the latter becomes laminar and
thus a primary instability is excited, generating a new
vortex. In Fig. 5a and b, the newly born vortices are in-
dicated with arrows. This new state is very unstable and
breaks down to turbulence because of the interaction
between the vortices created on the same side of z. Going
back to the first case illustrated in Fig. 6a, the same
process occurs, but the new vortex is generated in the
first drift away from the bead, i.e. at half the oscillation
period.

Accordingly, the transition to turbulence of the locally
forced pCf occurs after several bifurcations. The state of
the flow as a whole depends critically on what happens in
the bead vicinity.

3.2
Collapse of the turbulence state
Figure 7 represents a typical example of when the co-
herent state is re-established after a turbulent burst. We
point out two consecutive stages: the decay of turbulence
followed by the generation of the vortex pairs. In most of
the cases, turbulence decays gradually all over the space.
A sudden collapse of the fluctuations is seldom observed.
This fact leads to a laminar state close to the bead.
Consequently, two coherent vortex pairs at +z and –z are
generated. The latter are formed close to the bead and
they appear symmetric with respect to z�0. Then they
drift away and gradually the vorticity direction tends to be
parallel to x!.

Accordingly, the generation of the coherent state usu-
ally takes place at the same time on both sides of the bead
after passing the laminar state.

4
Inside a turbulent burst
In this section, we investigate the properties of the tur-
bulent state using spatio-temporal correlation coefficients.
Having a permanent perturbation allows us to investigate

Fig. 5. Two samples of the filtered spatio-
temporal diagrams showing a transition
from the coherent to the turbulent state. The
arrows indicate the newborn vortices

Fig. 6a, b. Positions before the pre-destabilization period (z) and at
its end (z¢) in a for the positive side, and in b for the negative one; the
straight line illustrates z vs z
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the dynamics of turbulent fluctuations, which were too
fast to be observed when using an instantaneous pertur-
bation. The goal here is thus to understand the way
turbulence is sustained for relatively long periods of times
at such a low Reynolds number (Re=310).

Looking at Fig. 4b, it appears that turbulence is sus-
tained by either a continuous generation of vortex pairs
near the bead followed by a drift away from it, or by a
generation at a given time of a certain number of periodic
structures with wavelength increasing in time (the coher-
ent part of the turbulent fluctuations is called streaks). The
interaction among the vortices generates a random-like
motion.

The statistical properties of turbulence are characterized
by the spatio-temporal correlation coefficient defined as

C z0; dz; sð Þ ¼ Iz0
tð ÞIz0þdz t þ sð Þh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Iz0
tð Þ2

� �
Iz0þdz tð Þ2
� �q ;

where z0 and dz denote respectively a position and a width.
Spatial characteristics are obtained by changing dz and
keeping z0 constant ðCz0

ðz ¼ z0 þ dz; sÞÞ, or vice versa
(Cdz(z0,s)), whereas temporal dependence is obtained by
varying s. In this section, a data string where the flow is
turbulent over T=15,000 s is used.

4.1
The spatio-temporal correlation at fixed z0

The relation between I(z0, t) and its surrounding,
I(z=z0+dz, t+s) is quantified by Cz0

ðz; sÞ where z0 takes
some chosen values, and dz and s are varied.

Figure 8 illustrates the spatio-temporal correlation for
z0=2, 10, 20, and 30 mm (0.6, 2.9, 5.7, and 8.6h). The colors

represent the correlation amplitude changing linearly from
dark blue to violet.

At z0=2, the spatio-temporal correlation width in time
and space is small indicating that perturbations at such
distances from the origin are not yet coherent in the sense of
long-lived dissipative structures. This aspect dramatically
changes as z0 is increased, when a high-amplitude correla-
tion is recorded over an oblique large area reflecting
auto-correlation of the vortices moving in the (z, t) space.
Furthermore, the correlation among the parallel vortices is
reflected in parallel oblique structures observed in the last
right-hand subplot in Fig. 8. The distance between the
parallel correlation fingers yields a wavelength k�20 mm
(5.7h). One can also deduce the average scale of the dissi-
pative structures from the spatio-temporal correlation half-
width, and their velocity is estimated from the slope that the
correlation amplitude makes in the (z, t) space. These
properties appear in Table 1 for the different values of z0.

4.2
The spatio-temporal correlation at fixed dz
In this subsection, z0 is changed between 0 and 50 mm (0
to 14.3h), and dz is fixed. The color mapping is the same as
in the previous section depending on the amplitude of
Cdz(z0, s). For dz=1 mm (0.3h), the first left-hand plot in
Fig. 9 indicates high correlation with maximum values of
about s0�0. The amplitude decreases as z0 tends to the
boundaries indicating that these areas are less visited. This
fact is clearer in the next figure, where dz=5 mm (1.4h)
and maximum correlation is attained at s0�20 s. This re-
flects an average delay time between fluctuations separated
by a distance of 1.4h caused by the oblique propagation of
the vortices. When the distance between the two correlated

Fig. 7. The transition from a turbulent state
to a coherent state; note that before the two
counter-rotating vortices are born in the
vicinity of the bead, the fluctuations have
disappeared

Fig. 8. The spatio-temporal correlation de-
termined for four positions of z0. The
horizontal white line in each subplot sche-
matizes the wire position
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signals is multiplied by a factor of two, dz=10 mm (2.9h),
the average delay time becomes s0�40 s. At dz=15 mm
(4.3h) a non-negligible correlation amplitude is recorded
about s0�100 s.

The overall correlation amplitude decreases with in-
creasing dz reflecting the long time and distance inco-
herence of the structures. We also note the decrease of the
correlation amplitude in the vicinity of the bead (z0/
h £ 2.3), which is in agreement with the results of the
previous section.

Accordingly, we deduce that turbulence is generally
formed from parallel oblique vortices. They are born in the
vicinity of the bead, they live and gain coherence at dis-
tances about 20 mm (5.7h) from it, and they die when
z�60 mm (17h) is exceeded. Therefore, even in the tur-
bulent state, the pCf dynamics is determined by what is
happening in the bead vicinity. Even though the turbulent
spot extends over a large region in space, it is still sus-
tained by the local source. The space filling is accom-
plished by a convective process that drives the vortices
toward the boundaries.

5
Conclusion
A detailed investigation of the locally forced pCf is carried
out at a Reynolds number equal to 310. The existence of a
state, which precedes the generation of turbulence, is
identified. In this state, the vortices remain coherent but
subject to oscillations in the (x, z) plane (perpendicular to
the coherent state vortex directions), which leads to a drift
of the vortices towards the boundaries. The period of such
oscillation is estimated at about 800 s. Consequently, the
state of the flow in the bead vicinity becomes laminar,
which excites the primary instability leading to the gen-
eration of a new vortex. The interaction between this new
vortex and the one already there breaks their coherence
and leads to turbulence. However, the 800 s period is not
often observed because a new vortex is generated after the
first drift at half the oscillation period. The return to the
coherent state is generally the result of the collapse of the

fluctuations all over the sheared region. The flow being
laminar again, it is re-excited by the primary instability
leading to the coherent state.

In the turbulent state, the distance to the origin is
found to play an important role in the generation of
turbulence and its spatial extension. This fact was dem-
onstrated using the spatio-temporal correlation coeffi-
cient that clearly reflected the oblique motion in the (z,
x) space. We are able to assess some of the incoherent
vortices properties such as their average velocity, the
distance above which they gain coherence, their lifetime
and the average distance between them. Most important,
we showed that vortices are born in the bead vicinity and
they are convected away. When they reach distances
where the initial kinetic energy cannot overcome dissi-
pation, they vanish.
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