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Finite-memory effects on the dynamics of the latent order
book can be accounted for by allowing finite cancellation and
decomposition rates within a continuous reaction-diffusion set-
up

1. Introduction

Understanding the price formation mechanisms is undoubtably
among the most exciting challenges of modern finance. Market
impact refers to the way market participants’ actions mechan-
ically affect prices. Significant progress has been made in this
direction during the past decades (Hasbrouck 2007, Bouchaud
et al. 2008, Weber and Rosenow 2005, Bouchaud 2010). A
notable breakthrough was the empirical discovery that the ag-
gregate price impact of a meta-order§ is a concave function (ap-
proximately square-root) of its size Q (Grinold and Kahn 2000,
Almgren et al. 2005, Tóth et al. 2011, Donier and Bonart 2015).
In the recent past, so-called ‘latent’ order book models (Tóth
et al. 2011, Mastromatteo et al. 2014a, 2014b, Donier et al.
2015) have proven to be a fruitful framework to theoretically
address the question of market impact, among others.

∗Corresponding author. Email: michael.benzaquen@polytechnique.
edu
§A ‘meta-order’ (or parent order) is a bundle of orders corresponding
to a single trading decision. A meta-order is typically traded
incrementally through a sequence of child orders.

As a precise mathematical incarnation of the latent order
book idea, the zero-intelligence LLOB model of Donier et al.
(2015) was successful at providing a theoretical underpinning
to the square-root impact law. The LLOB model is based on
a continuous mean field setting that leads to a set of reaction–
diffusion equations for the dynamics of the latent bid and
ask volume densities. In the infinite-memory limit (where the
agents intentions, unless executed, stay in the latent book for-
ever and there are no arrivals of new intentions), the latent
order book becomes exactly linear and impact exactly square-
root. Furthermore, this assumption leads to zero permanent
impact of uninformed trades, and an inverse square-root decay
of impact as a function of time. While the LLOB model is
fully consistent mathematically, it suffers from at least two
major difficulties when confronted with micro-data. First, a
strict square-root law is only recovered in the limit where the
execution rate m0 of the meta-order is larger than the normal
execution rate J of the market itself—whereas most meta-order
impact data are in the opposite limit m0 � 0.1J . Moreover, the
regime m0 > J yields nearly deterministic impact trajectories
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that are clearly unrealistic (except for Bitcoin in the early days,
see Donier and Bonart 2015). Second, the theoretical inverse
square-root impact decay is too fast and leads to significant
short time mean-reversion effects, not observed in real prices.

The aim of the present paper is to show that introducing
different timescales for the renewal of liquidity allows one to
cure both the above deficiencies. In view of the way financial
markets operate, this step is very natural: agents are indeed
expected to display a broad spectrum of timescales, from low-
frequency institutional investors to High-Frequency Traders
(HFT). We show that provided the execution rate m0 is large
compared to the low-frequency flow, but small compared to J ,
the impact of a meta-order crosses over from a linear behaviour
at very small Q to a square-root law in a regime of Qs that can
be made compatible with empirical data. We show that in the
presence of a continuous, power-law distribution of memory
times, the temporal decay of impact can be tuned to recon-
cile persistent order flow with diffusive price dynamics (often
referred to as the diffusivity puzzle) (Bouchaud et al. 2004,
2008, Lillo and Farmer 2004). We argue that the permanent
impact of uninformed trades is fixed by the slowest liquidity
memory time, beyond which mean-reversion effects disappear.
Interestingly, the permanent impact is found to be linear in the
executed volume Q and independent of the trading rate, as
dictated by no-arbitrage arguments.

Our paper is organized as follows. We first recall the LLOB
model of Donier et al. (2015) in section 2. We then explore
in section 3 the implications of finite cancellation and depo-
sition rates (finite memory) in the reaction–diffusion equa-
tions, notably regarding permanent impact (section 4). We
generalize the reaction–diffusion model to account for several
deposition and cancellation rates. In particular, we analyse in
section 5 the simplified case of a market with two sorts of
agents: long memory agents with vanishing deposition and
cancellation rates, and short memory high-frequency agents
(somehow playing the role of market makers). Finally, we
consider in section 6 the more realistic case of a continuous
distribution of cancellation and deposition rates and show that
such a framework provides an alternative way to solve the
diffusivity puzzle (see Benzaquen and Bouchaud 2018) by
adjusting the distribution of cancellation and deposition rates.
Many details of the calculations are provided in the appendices.

2. Locally linear order book model

We here briefly recall the main ingredients of the locally linear
order book (LLOB) model as presented by Donier et al. (2015).
In the continuous ‘hydrodynamic’ limit, we define the latent
volume densities of limit orders ϕb(x, t) (bid side) and ϕa(x, t)
(ask side) in the reference frame of the fair price† at relative
position x and time t . The latent volume densities obey the

†The variable x denotes the reservation price relative to the ‘fair’
price p̂t such that the true reservation price reads p = p̂t + x . We
here assume that the fair price p̂t encodes all informational aspects of
prices and itself performs (on short time scales) an additive random
walk with diffusivity coefficient D.

Figure 1. Stationary order book φst(ξ) as computed by Donier et al.
(2015). The linear approximation holds up to ξc =

√
Dν−1 and the

volume Qlin. of the grey triangles is of order Qlin. := Lξ2
c = Jν−1.

following set of partial differential equations:

∂tϕb = D∂xxϕb − νϕb + λ�(xt − x) − Rab(x) (1a)

∂tϕa = D∂xxϕa − νϕa + λ�(x − xt ) − Rab(x) , (1b)

where the different contributions on the right-hand side respec-
tively signify (from left to right): heterogeneous reassessments
of agents intentions with diffusivity D (diffusion terms), can-
cellations with rate ν (death terms), arrivals of new intentions
with intensity λ (deposition terms), and matching of buy/sell
intentions (reaction terms). The relative transaction price xt

is conventionally defined through the equation ϕb(xt , t) =
ϕa(xt , t). The non-linearity arising from the reaction term in
equations (1a) and (1b) can be abstracted away by defining
φ(x, t) = ϕb(x, t) − ϕa(x, t), which solves:

∂tφ = D∂xxφ − νφ + s(x, t) , (2)

where the source term reads s(x, t) = λ sign(xt − x) and the
price xt is defined as the solution of:

φ(xt , t) = 0 . (3)

Setting ξ = x − xt , the stationary order book can easily be ob-
tained as: φst(ξ) = −(λ/ν) sign(ξ)[1 − exp(−|ξ |/ξc)] where
ξc = √

Dν−1 denotes the typical length scale below which the
order book can be considered to be linear: φst(ξ) ≈ −Lξ (see
figure 1). The slope L := λ/

√
νD defines the liquidity of the

market, from which the total execution rate J can be computed
since:

J := ∂ξφ
st(ξ)

∣∣
ξ=0 = DL. (4)

Donier et al. (2015) focused on the infinite memory limit,
namely ν, λ → 0 while keeping L ∼ λν−1/2 constant, such
that the latent order book becomes exactly linear since in that
limit ξc → ∞. This limit considerably simplifies the mathe-
matical analysis, in particular concerning the impact of a meta-
order. An important remark must however be introduced at this
point: although the limit ν → 0 is taken in Donier et al. (2015),
it is assumed that the latent order book is still able to reach its
stationary state φst(ξ) before a meta-order is introduced. In
other words, the limit ν → 0 is understood in a way such that
the starting time of the meta-order is large compared to ν−1.
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3. Price trajectories with finite cancellation and deposition
rates

As mentioned in the introduction we here wish to explore the
effects of non-vanishing cancellation and deposition rates, or
said differently the behaviour of market impact for execution
times comparable to or larger than ν−1. The general solution
of equation (2) is given by:

φ(x, t) = (Gν 	 φ0) (x, t)

+
∫

dy
∫ ∞

0
dτ Gν(x − y, t − τ)s(y, τ ) , (5)

where φ0(x) = φ(x, 0) denotes the initial condition, and where
Gν(x, t) = e−νtG(x, t) with G the diffusion kernel:

G(x, t) = �(t)
e− x2

4Dt√
4π Dt

. (6)

Following Donier et al. (2015), we introduce a buy (sell) meta-
order as an extra point-like source of buy (sell) particles with
intensity rate mt such that the source term in equation (2)
becomes: s(x, t) = mtδ(x − xt ) · 1[0,T ] + λ sign(xt − x),
where T denotes the time horizon of the execution. In all the
following we shall focus on buy meta-orders—without loss
of generality since within the present framework everything
is perfectly symmetric. Performing the integral over space in
equation (5) and setting φ0(x) = φst(x) yields:

φ(x, t) = φst(x)e−νt +
∫ min(t,T )

0
dτ mτGν(x − xτ , t − τ)

− λ

∫ t

0
dτ erf

[
x − xτ√

4D(t − τ)

]
e−ν(t−τ) . (7)

The equation for price (3) is not analytically tractable in the
general case, but different interesting limit cases can be inves-
tigated. In particular, focusing on the case of constant partici-
pation rates mt = m0, one may consider:

(i) Small participation rate m0 � J vs large participation
rate m0 	 J .

(ii) Fast execution νT � 1 (the particules in the book are
barely renewed during the meta-order execution) vs slow
execution νT 	 1 (the particles in the book are com-
pletely renewed, and the memory of the initial state has
been lost).

(iii) Small meta-order volumes Q := m0T � Qlin. (for
which the linear approximation of the stationary book
is appropriate, see figure 1) vs large volumes Q 	 Qlin.

(for which the linear approximation is no longer valid).

So in principle, one has to consider 23 = 8 possible limit
regimes. However, some regimes are mutually exclusive so
that only six of them remain. A convenient way to summarize
the results obtained for each of the limit cases mentioned above
is to expand the price trajectory xt up to first order in

√
ν as:†

xt = α
[
z0

t + √
νz1

t + O(ν)
]

, (8)

where z0
t and z1

t denote, respectively, the zeroth-order and
first-order contributions. Table 1 gathers the results for fast
execution (νT � 1) and small meta-order volumes (Q �

†Note that working at constant L implies λ = O
(√

ν
)
.

Figure 2. Top graph: Price trajectory during and after a buy meta-
order execution for νT � 1. (Black curve) zeroth-order result
from Donier et al. (2015). (Orange curve) first-order result. (Blue
curve) first-order correction (see equation (8)). Bottom graph: Price
trajectory for νT 	 1. Note that the x-axis is not to scale since ν−1 �
(resp. 	) T .

Qlin.). Note that the leading correction term z1
t is negative, i.e.

the extra incoming flux of limit orders acts to lower the impact
of the meta-order, see figure 2. The price trajectory for slow
execution and/or large meta-order volumes, on the other hand,
simply reads:

xt = m0ν

λ
t . (9)

The corresponding calculations and explanations are given in
appendix 1.

4. Permanent impact as a finite-memory effect

As mentioned in the introduction, the impact relaxation fol-
lowing the execution is an equally important question. We here
compute the impact decay after a meta-order execution. In the
limit of small cancellation rates, we look for a scaling solution
of the form z1

t = T F(νt) (see equation (8)) where F is a
dimensionless function. We consider the case where νT � 1
and Q � Qlin.. Long after the end of the execution of the meta-
order, i.e. when t 	 T , equation (3) together with equations
(7) and (8) becomes (to leading order):

0 = −λαT√
D

F(νt)e−νt − 2λα

∫ t

0
dτ

z0
t − z0

τ√
4π D(t − τ)

e−ν(t−τ)

− 2λαT
√

ν

∫ t

0
dτ

F(νt) − F(ντ )√
4π D(t − τ)

e−ν(t−τ) . (10)

Letting u = νt and z0
t = β/

√
u (see table 1) yields:

0 = √
πe−u F(u) + β

∫ u

0
dv

√
v − √

u√
uv(u − v)

ev−u

+
∫ u

0
dv

F(u) − F(v)√
u − v

ev−u . (11)
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Table 1. Price trajectories for different impact regimes (see equation (8)). We set β0 := 1
2 [m0/(2π J )]1/2. Fβ(u) is the solution of Eq. (11).

z0
t z1

t

α t ≤ T t > T t ≤ T t > T

m0 � J m0
L√

π D

√
t

√
t − √

t − T
(√

π/2 − 2/
√

π
)

t T Fβ=1/2(vt)

m0 	 J
√

2m0L
√

t
√

t − √
t − T for t � T − 1

3

(
J

2m0

)1/2
t T Fβ=β0 (vt)

β0T/
√

t for t 	 T

Finally seeking F asymptotically of the form F(u) = F∞ +
Bu−γ + Cu−δe−u one can show that:

F(u) = F∞ − β√
u

[
1 − e−u] (u 	 1) , (12)

with the permanent component given by F∞ = β
√

π , where β

depends on the fast/slow nature of the execution (see
table 1).

Injecting the solution for F(u) in equation (8), and taking
the limit of large times, one finds that the t−1/2 decay of the
zeroth-order term is exactly compensated by the βu−1/2 term
coming from F(u), showing that the asymptotic value of the
impact, given by I∞ = α

√
νT F∞, is reached exponentially

fast as νt → ∞ (see figure 2). This result can be interpreted
as follows. At the end of execution (when the peak impact
is reached), the impact starts decaying towards zero in a slow
power-law fashion (see Donier et al. 2015) until approximately
t ∼ ν−1, beyond which all memory is lost (since the book has
been globally renewed). Impact cannot decay anymore, since
the previous reference price has been forgotten. Note that in
the limit of large meta-order volumes and/or slow executions,
all memory is already lost at the end of the execution and
the permanent impact trivially matches the peak impact (see
figure 2).

An important remark is in order here. Using table 1, one finds
that I∞= 1

2ξc(Q/Qlin.) in both the small and large participa-
tion regime. In other words, we find that the permanent impact
is linear in the executed volume Q, as dictated by no-arbitrage
arguments (Huberman and Stanzl 2004, Gatheral 2010) and
compatible with the classical Kyle framework (Kyle 1985).
Nevertheless, the origin of this permanent impact is purely
statistical here, and not necessarily related to ‘true’information
(which we have subsumed in the dynamics of the fair price p̂t ).
In other words, even random trades have a non-zero permanent
impact as soon as the latent order book has a finite memory, pre-
cisely as in the zero-intelligence Santa-Fe model (Smith et al.
2003) where diffusive prices are generated from random trades.

5. Impact with fast and slow traders

5.1. Set up of the problem

As stated in the introduction, one major issue in the impact
results of the LLOB model as presented by Donier et al. (2015)
is the following. Empirically, the impact of meta-orders is only
weakly dependent on the participation rate m0/J (see e.g. Tóth
et al. 2011). The corresponding square-root law is commonly

written as:

IQ := 〈xT 〉 = Yσ

√
Q

V
, (13)

where σ is the daily volatility, V is the daily traded volume,
and Y is a numerical constant of order unity. Note that IQ only
depends on the total volume of the meta-order Q = m0T , and
not on m0 (or equivalently on the time T ).

As one can check from table 1, the independence of impact
on m0 only holds in the large participation rate limit (m0 	 J ).
However, most investors choose to operate in the opposite limit
of small participation rates m0 � J , and all the available data
are indeed restricted to m0/J � 0.1. In addition, the regime
m0 	 J yields deterministic square-root impact trajectories
that would be easily detectable† and would lead to arbitrage
opportunities in the absence of true information, as extensively
discussed in Farmer et al. (2013), Gomes and Waelbroeck
(2015), Bershova and Rakhlin (2013). Here, we offer a possible
way out of this conundrum. The intuition is that the total
market turnover J is actually dominated by high-frequency
traders/market makers, whereas resistance to slow meta-orders
can only be provided by slow participants on the other side of
the book. More precisely, consider that only two sorts of agents
co-exist in the market (see section 6 for a continuous range of
frequencies):

(i) Slow agents with vanishing cancellation and deposi-
tion rates: νsT → 0, while keeping the correspond-
ing liquidity Ls := λs/

√
νs D finite; and

(ii) Fast agents with large cancellation and deposition
rates, νfT 	 1, such that Lf := λf/

√
νf D 	 Ls.

The system of partial differential equations to solve now reads:

∂tφs = D∂xxφs − νsφs + ss(x, t) (14a)

∂tφf = D∂xxφf − νfφf + sf(x, t) , (14b)

where sk(x, t) = λk sign(xkt − x) + mktδ(x − xkt ), together
with the conditions:

mst + mft = m0 (15)

xst = xft = xt . (16)

†Indeed, the price trajectory during a meta-order execution results
from the combination of a square-root xt = α

√
t (see table 1) and

the wander about of the fair price p̂t ∼ √
Dt (see Sect. 1). The

deterministic square-root signal is detectable if it exceeds the noise
level, that is α

√
t >

√
Dt which precisely corresponds to m0 > J . In

the regime m0 � J (equivalent to α
√

t � √
Dt) the signal is hidden

in the overall noise, which explains why square-root trajectories are
seldom observed in real price time series.
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Figure 3. Stationary double-frequency order book φst(x) = φst
s (x)

(purple) + φst
f (x) (green) (see section 5).

Equation (15) means that the meta-order is executed against
slow and fast agents, respectively, contributing to the rates mst

and mft . Equation (16) simply means that there is a unique
transaction price, the same for slow and for fast agents. The
total order book volume density is then given by φ = φs + φf.
In particular, in the limit of slow/fast agents discussed above
the stationary order book is given by the sum of φst

s (x) ≈
−Lsx and φst

f (x) ≈ −(λf/νf)sign(x) (see figure 3). The total
transaction rate now reads

J = D
∣∣∂x

[
φst

s + φst
f

]∣∣
x=0 = Js + Jf, (17)

where Jf 	 Js (which notably implies that J ≈ Jf).

5.2. From linear to square-root impact

We now focus on the regime where the meta-order intensity is
large compared to the average transaction rate of slow traders,
but small compared to the total transaction rate of the market,
to wit: Js � m0 � J . In this limit equations (14a) and
(14b), together with the corresponding price setting equations
φk(xkt , t) ≡ 0 yield (see appendix 2):

xst =
(

2

Ls

∫ t

0
dτ msτ

)1/2

(18a)

xft = νf

λf

∫ t

0
dτ mfτ . (18b)

Differentiating equation (16) with respect to time together with
equations (18) and using equation (15) yields:

mft = m0√
1 + t

t	

, with t	 := 1

2νf

J 2
f

Jsm0
, (19)

and mst = m0 − mft . Equation (19) indicates that most of the
incoming meta-order is executed against the rapid agents for
t < t	 but the slow agents then take over for t > t	 (see figure
4). The resulting price trajectory reads:

xt = λf

Lsνf

(√
1 + t

t	
− 1

)
, (20)

which crosses over from a linear regime when t � t	 to a
square-root regime for t 	 t	 (see figure 4). For a meta-
order of volume Q executed during a time interval T , the
corresponding impact is linear in Q when T < t	 and square-
root (with IQ independent of m0) when T > t	. This last

Figure 4. Execution rates mit (top) and price trajectory (bottom)
within the double-frequency order book model (see section 5).

regime takes place when Q > m0t	, which can be rewritten
as:

Q

Vd
>

1

νfTd

J

Js
, (21)

where Vd is the total daily volume and Td is one trading day.
Numerically, with a HFT cancellation rate of—say—νf =
1 s−1 and Js = 0.1J , one finds that the square-root law holds
when the participation rate of the meta-order exceeds 3 10−4,
which is not unreasonable when compared with impact data.
Interestingly, the cross-over between a linear impact for small
Q and a square-root for larger Q is consistent with the data
presented by Zarinelli et al. (2015) (note that the logarithmic
impact curve proposed in Zarinelli et al. (2015) is indeed linear
for small Q).

5.3. Impact decay

Regarding the decay impact for t > T , the problem to solve
is that of equations (14a), (14b) and (16) only where equation
(15) becomes:

mst + mft = 0 . (22)

The solution behaves asymptotically (t 	 T ) to zero as xt ∼
t−1/2 (see appendix 2). Given the results of section 4 in the
presence of finite-memory agents, the absence of permanent
impact may seem counter-intuitive. In order to understand this
feature of the double-frequency order book model in the limit
νs T → 0, νf T 	 1, one can look at the stationary order book.
As one moves away from the price, the ratio of slow over fast
volume fractions (φs/φf) grows linearly to infinity. Hence, the
shape of the latent order book for |x | 	 x	 matches that of
the infinite memory single-agent model originally presented
by Donier et al. (2015) (see figure 3). This explains the me-
chanical return of the price to its initial value before execution,
encoded in the infinite memory latent order book when νs = 0.
However, the permanent impact for small but non-zero νs is of
order

√
νs, as obtained in section 4.
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5.4. The linear regime

The regime of very small participation rates for which m0 �
Js, Jf is also of conceptual interest. In such a case equation
(18a) must be replaced with:

xst = 1

Ls

∫ t

0
dτ

msτ√
4π D(t − τ)

, (23)

which together with equations (18b), (15) and (16) yields, in
Laplace space (see appendix 2):

m̂1p = 1

p

m0

1 +√
pt†

, (24)

where t† = (m0/π Js)t	, with t	 defined in equation (19). For
small times (t � t†) one obtains mst = 2m0

√
t/t† while

for larger times (t† � t < T ), mst = m0[1 − √
t†/(π t)].

Finally using again equations (18b), (15) and (16) yields xt =
(νf/λf)m0t for t � t† and xt = (νf/λf)m0

√
t t†/π for t† �

t < T , identical in terms of scaling to the price dynamics
observed in the case Js � m0 � Jf discussed above. The
asymptotic impact decay is identical to the one obtained in
that case as well.

6. Multi-frequency order book

The double-frequency framework presented in section 5 can
be extended to the more realistic case of a continuous range of
cancellation and deposition rates. Formally, one has to solve
an infinite set of equations, labelled by the cancellation rate
ν:†

∂tφν = D∂xxφν − νφν + sν(x, t) , (25)

where φν(x, t) denotes the contribution of agents with typical
frequency ν to the latent order book, and sν(x, t) = λν sign
(xνt − x) + mνtδ(x − xνt ), with λν = Lν

√
νD. Equation (25)

must then be completed with:∫ ∞

0
dνρ(ν)mνt = mt (26a)

xνt = xt ∀ν , (26b)

where ρ(ν) denotes the distribution of cancellation rates ν, and
where we have allowed for an arbitrary order flow mt . Solving
exactly the above system of equations analytically is an am-
bitious task. In the following, we present a simplified analysis
that allows us to obtain an approximate scaling solution of the
problem for a power-law distribution of frequencies ν.

6.1. The propagator regime

We first assume, for simplicity, that the order flow Jν is inde-
pendent of frequency (see later for a more general case), and
consider the case when mt � J , ∀t .Although not trivially true,
we assume (and check later on the solution) that this implies
mνt � J ∀ν, such that we can assume linear response for all
ν. Schematically, there are two regimes, depending on whether

†In full generality, the diffusion coefficient should be allowed to
depend on ν. This can be simply implemented by changing the
distribution of frequencies as: ρ(ν) → ρ(ν)Dν/D.

Figure 5. Numerical determination of the kernel K (t, τ ) :=
M−1(t, τ ), for α = 0.25. One clearly sees that K decays as
(t − τ)−1/2 at large lags. The inset shows that K (t, t/2) behaves
as tα−1/2, as expected.

t 	 ν−1—in which case the corresponding density φν(x, t)
has lost all its memory, or t � ν−1. In the former case the
price trajectory follows equation (23), while in the latter case
it is rather equation (18b) that rules the dynamics. One thus
has:

For νt � 1 xt = 1

L√
D

∫ t

0
dτ

mντ√
4π(t − τ)

(27a)

For νt 	 1 xt = ν1/2

L√
D

∫ t

0
dτ mντ . (27b)

Inverting equations (27b) and defining �(t) := 2/
√

π t yields
(see appendix 2 and in particular equation (B7)):

For νt � 1 mνt = L
√

D
∫ t

0
dτ �(t − τ)ẋτ (28a)

For νt 	 1 mνt = L
√

Dν−1/2 ẋt . (28b)

Our approximation is to assume that mνt in equation (26a) is
effectively given by equation (28a) as soon as ν < 1/t and
by equation (28b) when ν > 1/t such that equation (26a)
becomes:∫ 1/t

0
dνρ(ν)

[ ∫ t

0
dτ�(t − τ)ẋτ

]
+
∫ ∞

1/t
dνρ(ν)

[
ν−1/2 ẋt

]
= mt

L√
D

. (29)

Equation (29) may be conveniently re-written as∫ t
0 dτ

[
G(t)�(t − τ) + H(t)t1/2

c δ(t − τ)
]
ẋτ = mt/(L

√
D),

with:

G(t) :=
∫ 1/t

0
dνρ(ν) , H(t) := t−1/2

c

∫ ∞

1/t
dνρ(ν)ν−1/2 .

(30)

Formally inverting the kernel M(t, τ ) := [
G(t)�(t − τ) +

H(t)t1/2
c δ(t − τ)

]
then yields the price dynamics ẋt as a linear

convolution of the past order flow mτ≤t . Note that when mt →
0, ẋt is also small and hence, using equations (28), all mνt are
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all small as well, justify our use of equations (27b) for all
frequencies.

6.2. Resolution of the ‘diffusivity puzzle’

Let us now compute the functions G(t) and H(t) for a specific
power-law distribution ρ(ν) defined as:

ρ(ν) = Zνα−1e−νtc , (31)

where α > 0, tc is a high-frequency cut-off, and Z =
tαc /�(α).† For such a distribution, one obtains G(t) = 1 −
�(α, tc/t)/�(α) and H(t) = �(α − 1/2, tc/t)/�(α). In the
limit t � tc, G(t) ≈ 1 and H(t) ≈ 0. In the limit t 	
tc, G(t) ≈ (t/tc)−α/[α�(α)], and the dominant term in the
first-order expansion of H(t) depends on whether α ≶ 1/2.
One has H(t |α<1/2) ≈ 2(t/tc)1/2−α/[�(α)(1 − 2α)] and
H(t |α>1/2) ≈ �(α − 1/2)/�(α). Focusing on the interesting
case α < 1/2, one finds (see figure 5) that inversion of the
kernel M(t, τ ) is dominated, at large times, by the first term
G(t)�(t − τ). Hence, one finds in that regime:†

xt ≈ α�(α)

Ltαc
√

D

∫ t

0
dτ

mτ τ
α

√
4π(t − τ)

. (32)

Let us now show that this equation can lead to a diffusive price
even in the presence of a long-range correlated order flow.
Assuming that 〈mt mt ′ 〉 ∼ |t − t ′|−γ with 0 < γ < 1 (defining
a long memory process, as found empirically (Bouchaud et al.
2004, Bouchaud et al. 2008), one finds from equation (32) that
the mean square price is given by:

〈x2
t 〉 ∝

∫∫ t

0
dτdτ ′ 〈mτ mτ ′ 〉(ττ ′)α√

(t − τ)(t − τ ′)
. (33)

Changing variables through τ → tu and τ ′ → tv easily yields
〈x2

t 〉 ∝ t1+2α−γ . Note that the LLOB limit corresponds to
a unique low-frequency ν for the latent liquidity. This limit
can be formally recovered when α → 0. In this case, we
recover the ‘disease’ of the LLOB model, namely a mean-
reverting, subdiffusive price 〈x2

t 〉 ∝ t1−γ for all values of
γ > 0. Intuitively, the latent liquidity in the LLOB case is too
persistent and prevents the price from diffusing. Imposing price
diffusion, i.e. 〈x2

t 〉 ∝ t finally gives a consistency condition
similar in spirit to the one obtained in Bouchaud et al. (2004):

α = γ

2
<

1

2
. (34)

Equation (34) states that for persistent order flow to be com-
patible with diffusive price dynamics, the long-memory of
order flow must be somehow buffered by a long-memory of
the liquidity, which makes sense. The present resolution of the
diffusivity puzzle—based on the memory of a multi-frequency
self-renewing latent order book—is similar to, but different
from that developed in Benzaquen and Bouchaud (2018). In

†Note that rigorously speaking, one should also introduce a low-
frequency cut-off νLF to ensure the existence of a stationary state of
the order book in the absence of meta-order. Otherwise, 〈ν−1〉 = ∞
when α ≤ 1 and the system does not reach a stationary state (see the
end of section 2 and Benzaquen and Bouchaud (2018) for a further
discussion of this point).
†Taking into account the H(t) contribution turns out not to change
the following scaling argument.

Figure 6. Price trajectory during a constant rate meta-order
execution within the multi-frequency order book model. For γ = 1/2,
the impact crosses over from a t3/4 to a t5/8 regime.

the latter study, we assumed the reassessment time of the la-
tent orders to be fat-tailed, leading to a ‘fractional’ diffusion
equation for φ(x, t).

6.3. Meta-order impact

We now relax the constraint that λν ∝ √
ν and define Jν :=

Jhf(νtc)ζ with ζ > 0, meaning that HFT is the dominant
contribution to trading, since in this case:

J =
∫ ∞

0
dνρ(ν)Jν = Jhf

�(ζ + α)

�(α)
. (35)

(The case ζ < 0 could be considered as well, but is probably
less realistic).

We consider a meta-order with constant execution rate m0 �
Jhf. Since Jν decreases as the frequency decreases, there must
exist a frequency ν	 such that m0 = Jν	 , leading to ν	tc =
(m0/Jhf)

1/ζ .‡ When ν � ν	, we end up in the non-linear,
square-root regime where m0 	 Jν and equation (18a) holds.
Proceeding as in the previous section, we obtain the following
approximation for the price trajectory:

Gζ (t)

[ ∫ t

0
dτ�(t − τ)ẋτ1{t≤ν	−1} + xt ẋt

2
√

D
1{t>ν	−1}

]
+ t1/2

c Hζ (t)ẋt = m0
√

D

Jhf
. (36)

where, in the limit t 	 tc and α + ζ < 1/2:

Gζ (t) :=
∫ 1/t

0
dνρ(ν)(νtc)

ζ ≈
(

tc
t

)α+ζ 1

�(α)(α + s)
(37a)

Hζ (t) :=
∫ ∞

1/t
dνρ(ν)(νtc)

ζ−1/2 ≈
(

tc
t

)α+ζ−1/2

× 1

�(α)(1/2 − α − s)
. (37b)

At short times t � ν	−1, equation (36) boils down to equation
(29) with α → α + ζ and one correspondingly finds:

xt ∝ xc
m0

Jhf

(
t

tc

) 1
2 +α+ζ

, (38)

‡Here again, we assume that ν	 is much larger than the implicit low-
frequency cut-off νLF.
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where xc := √
Dtc. For t 	 ν	−1, the second term in equation

(36) dominates over both the first and the third terms, leading
to a generalized square-root law of the form:

xt ∝ xc

√
m0

Jhf

(
t

tc

) 1+α+ζ
2

, (39)

Compatibility with price diffusion imposes now that α + ζ =
γ /2, which finally leads to (see figure 6):

xt ∝ xc
m0

Jhf

(
t

tc

) 1+γ
2

, when tc � t � tc

(
Jhf

m0

)1/ζ

(40a)

xt ∝ xc

√
m0

Jhf

(
t

tc

) 2+γ
4

, when t 	 tc

(
Jhf

m0

)1/ζ

.

(40b)

In the latter case, setting γ = 1/2 and Q = m0T , one finds
an impact IQ := xT behaving as§ Q5/8 as soon as Q >

υ(Jhf/m0)
(1−ζ )/ζ , where we have introduced an elementary

volume υ := Jhftc, which is the volume traded by HFT during
their typical cancellation time. For small meta-orders such that
T � tc, impact is linear in Q.

7. Conclusion

In this work, we have extended the LLOB latent liquidity
model (Donier et al. 2015) to account for the presence of
agents with different memory timescales. This has allowed
us to overcome several conceptual and empirical difficulties
faced by the LLOB model. We have first shown that whenever
the longest memory time is finite (rather than divergent in
the LLOB model), a permanent component of impact appears,
even in the absence of any ‘informed’ trades. This permanent
impact is linear in the traded quantity and independent of the
trading rate, as imposed by no-arbitrage arguments. We have
then shown that the square-root impact law holds provided the
meta-order participation rate is large compared to the trading
rate of ‘slow’ actors, which can be small compared to the total
trading rate of the market—itself dominated by high-frequency
traders. In the original LLOB model where all actors are slow,
a square-root impact law independent of the participation rate
only holds when the participation rate is large compared to
the total market rate, a regime not consistent with empirical
data, as it would lead to nearly deterministic square-root impact
trajectories.

Finally, the multi-scale latent liquidity model offers a new
resolution of the diffusivity paradox, i.e. how an order flow with
long-range memory can give rise to a purely diffusive price.
We show that when the liquidity memory times are themselves
fat-tailed, mean-reversion effects induced by a persistent order
book can exactly offset trending effects induced by a persis-
tent order flow, as in the propagator model (Bouchaud et al.
2004).

We therefore believe that the multi-timescale latent order
book view of markets, encapsulated by equations (25) and
(26b), is rich enough to capture a large part of the subtleties

§Note that 5/8 ≈ 0.6 is very close to the empirical impact results
reported by Almgren et al. (2005) and Brokmann et al. (2015) in the
case of equities, for which γ is usually close to 1/2.

of the dynamics of markets. It suggests an alternative frame-
work to build agent based models of markets that generate
realistic price series, that complement and maybe simplify
previous attempts (Tóth et al. 2011, Mastromatteo et al. 2014b).
A remaining outstanding problem, however, is to reconcile the
extended LLOB model proposed in this paper with some other
well known ‘stylized facts’ of financial price series, namely
power-law distributed price jumps and clustered volatility. We
hope to report progress in that direction soon. Another, more
mathematical endeavour is to give a rigorous meaning to the
multi-timescale reaction model underlying equations (25) and
(26b) and to the approximate solutions provided in this paper. It
would be satisfying to extend the no-arbitrage result of Donier
et al. (2015), valid for the LLOB model, to the present multi-
timescale setting. Although more difficult to prove, we believe
that our multi-timescale model is arbitrage free, in the sense
that any round trip incurs positive costs on average.
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Appendix 1

We here provide the calculations that link equation (8) and table 1 dur-
ing a meta-order execution (t ≤ T ); the impact decay computations
(t > T ) are given and discussed in section 4.

In the limit of slow execution of the meta-order, one has
(xt − xτ )2 � 4D(t − τ) such that equation (7) together with equa-
tion (3) becomes:

0 = φst(xt )e
−νt +

∫ t

0
dτ

m0√
4π D(t − τ)

e−ν(t−τ)

− 2λ

∫ t

0
dτ

xt − xτ√
4π D(t − τ)

e−ν(t−τ) . (A1)

Interestingly, slow and short execution is only compatible with small
meta-order volume† (indeed, combining m0 � J and νT � 1
implies m0T � Jν−1). Thus for slow and short execution, using
the linear approximation φst(xt ) = −Lxt and letting equation (8)
into equation (A1) yields:

0 = −Lαz0
t + m0

√
t

π D
(A2a)

0 = −L√
νz1

t − 2λ

∫ t

0
dτ

z0
t − z0

τ√
4π D(t − τ)

. (A2b)

Equation (A2a) yields α = m0/(L√
π D) and z0

t = √
t , and it follows

from equation (A2b) that z1
t = −kt where k = √

4/π − √
π/4.

In the limit of fast execution, one has (xt − xτ )2 	 4D(t − τ)
such that the meta-order term can be approximated through the saddle
point method. Letting xτ ≈ xt − (t − τ)ẋt into the price equation

†Equivalently, rapid and long execution is only consistent with large
meta-order volume (combining m0 	 J and νT 	 1 implies
m0T 	 Jν−1).

now yields:

0 = φst(xt )e
−νt +

∫ t

0
dτ m0

e− ẋ2
t (t−τ )

4D√
4π D(t − τ)

e−ν(t−τ)

− λ

∫ t

0
dτ e−ν(t−τ) . (A3)

Letting u = t − τ and given 4D/ẋ2
t � t such that

∫ t
0 du ≈ ∫∞

0 du,
equation (A3) becomes:

0 = φst(xt )e
−νt + m0√

ẋ2
t + 4Dν

+ λ

ν

(
e−νt − 1

)
. (A4)

For short execution with small meta-order volume (we use φst(xt ) =
−Lxt ), letting equation (8) into equation (A4) yields:

0 = −Lαz0
t + m0

α|ż0
t | (A5a)

0 = −Lα
√

νz1
t −

√
νm0

α

ż1
t

(ż0
t )2

− λt . (A5b)

Equation (A5a) yields α = √
2m0/L and z0

t = √
t , and thus equation

(A5b) becomes ż1
t + z1

t /(2t) = − 1
2
√

J/(2m0). It follows that z1
t =

− t
3
√

J/(2m0). For a fast, short and large meta-order, xt is expected to
go well beyond the linear region of the order book such that in a hand-
waving static approach (consistent with fast and short execution) one
can match m0t and the area of a rectangle of sides xt and λν−1 (see
figure 1). Letting xt = bt yields b = m0ν/λ. Note that this result can
be recovered by letting xt = bt and φst(xt ) = −λν−1 into equation
(A4). Indeed, at leading order one obtains:

0 = −λ

ν
+ m0

|ẋt | , (A6)

from which the result trivially follows.
For long execution (νT 	 1) the memory of the initial book is

rapidly lost and one expects Markovian behaviour. Letting again xt =
bt into the price equation and changing variables through τ = t (1−u)
yields:

0 = m0
√

t
∫ 1

0
du

e− b2 tu
4D√

4π Du
e−νtu − λ

∫ 1

0
du e−νtu erf

√
b2tu
4D

=
(

m0 − λb

ν

)
1√

b2 + 4Dν
erf

√(
b2

4D + ν
)

t . (A7)

Interestingly, equation (A7) yields b = m0ν/λ (regardless of execu-
tion rate and meta-order size), which is exactly the result obtained
above in the case of fast and short execution of a large meta-order but
for different reasons.

Appendix 2

We here provide the calculations underlying the double-frequency
order book model presented in section 5. In particular for the case
Js � m0 � Jf, equations (18) are obtained as follows. In the limit
of large trading intensities the saddle point methods (as detailed in
appendix 1) can also be applied to the case of nonconstant execution
rates (one lets mτ ≈ mt about which the integrand is evaluated, see
Donier et al. 2015), in particular one obtains (equivalent to equation
(A5b)):

Lsxst |ẋst | = mst , (B1)

which yields equation (18a). For the rapid agents (νfT 	 1) we must
consider the case of long execution. In particular, an equation tanta-
mount to equation (A7) can also be derived in the case of nonconstant
execution rates. Proceeding in the same manner, one easily obtains:

0 =
(

mft − λf ẋft

νf

)
1√

ẋ2
ft + 4Dνf

erf

√(
ẋ2

ft
4D + νf

)
t , (B2)
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which yields ẋft = mftνf/λf and thus equation (18b). Then, as men-
tioned in section 5, the asymptotic impact decay is obtained from
equations (14a), (14b) and (16) only where for t > T we replace
equation (15) with equation (22). Using equation (7) together with
equation (3) in the limit νsT → 0, and νfT 	 1 together with (16)
yields (t > T ):

Lsxt =
∫ T

0
+
∫ t

T
dτ

msτ√
4π D(t − τ)

(B3a)

0 =
∫ T

0
+
∫ t

T
dτ

e−νf(t−τ)

√
4π D(t − τ)

[
mfτ − 2λf(xt − xτ )

]
.

(B3b)

Asymptotically (t 	 T ) the system of equations (B3b) becomes:

Lsxt =
∫ T

0

msτ dτ√
4π D(t − τ)

+
∫ t

T

msτ dτ√
4π D(t − τ)

(B4a)

0 =
∫ t

0
dτ

e−νf(t−τ)

√
4π D(t − τ)

[mfτ − 2λf(xt − xτ )] . (B4b)

We expect the asymptotic impact decay to be of the form xt = x∞ +
B/

√
t . In addition equation (B4b) indicates that mft ∼ ẋt . We thus let

mst = −mft = C/t3/2. Injecting into equation (B4a) yields x∞ = 0
(no permanent impact) and:

Ls B√
t

= 1√
t

[
m0 fT√

4π D
+ C√

π DT

]
, (B5)

where fT = T if t	 � T and fT = T 2/(3t	) if t	 	 T . On the other
hand, letting u = t −τ in equation (B4b) and using xt −xs ≈ (t −s)ẋt

yields at leading order:

0 =
∫ ∞

0
du

e−νfu√
u

[
− C

t3/2
+ λf Bu

t3/2

]
=
√

π

νft3

[
−C + λf B

νf

]
, (B6)

which combined with equation (B5) easily leads to the values of B
and C .

For the case m0 � Js, Jf, the calculations are slightly more subtle.
Inverting equation (23) in Laplace space yields:

mst = 2Ls
√

D
∫ t

0
dτ

ẋsτ√
π(t − τ)

. (B7)

One can easily check this result by re-injecting equation (B7) into
equation (23). In turn, inverting equation (18b) is straightforward
and yields mft = (λf/νf)ẋft . Injecting ẋst = ẋft into equation (B7)
and using equation (15) yields:

mst = 1√
t†

∫ t

0
dτ

m0 − msτ√
π(t − τ)

, (B8)

which can be written as:∫ t

0
dτ msτ �(t − τ) = 2m0

√
t , with

�(t) := δ(t)
√

π t† + θ(t)√
t

. (B9)

Taking the Laplace transform of equation (B9) one obtains
�̂(p)m̂sp = m0

√
π/p3/2 with �̂(p) =

√
π t† + √

π/p, which in
turn yields equation (24).
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