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The Brachistochrone problem, which describes the
curve that carries a particle under gravity in a vertical
plane from one height to another in the shortest
time, is one of the most famous studies in classical
physics. There is a similar problem in track cycling,
where a cyclist aims to find the trajectory on the
curved sloping surface of a velodrome that results
in the minimum lap time. In this paper, we extend
the classical Brachistochrone problem to find the
optimum cycling trajectory in a velodrome, treating
the cyclist as an active particle. Starting with two
canonical cases of cycling on a sloping plane and a
cone, where analytical solutions are found, we then
solve the problem numerically on the reconstructed
surface of the velodrome in Montigny le Bretonneux,
France. Finally, we discuss the parameters of the
problem and the effects of fatigue.

1. Introduction
In 1696, Johann Bernoulli posed a problem to the
scientific community which, after a year and half, had
only been solved by a handful of individuals, including
Newton and Leibniz [1,2]. Along with Newton’s minimal
resistance problem, it was one of the first mathematical
studies that pioneered the field of the variational
calculus, and so had an immense influence thereafter [3].
The Brachistochrone problem, whose etymology comes
from the ancient Greek for shortest time [1], describes a
curve that carries a particle under gravity in a vertical
plane from one height to another in minimal time.
The solution is equivalent to the path traced out by a
rolling circle, also known as a cycloid. Other variations
of this problem have included the effects of friction

2020 The Author(s) Published by the Royal Society. All rights reserved.
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côte d’azur

black line

pos. athlete country time (s) u (km h–1)

1 Jason Kenny GBR 9.551 75.384

2 Callum Skinner GBR 9.703 74.203

3 Matthew Glaetzer AUS 9.704 74.196

4 Denis Dmitriev RUS 9.774 73.664

5 Grégory Baugé FRA 9.807 73.416

(b)(a)

(c) (d )

(e)

( f )

Figure 1. (a–d) Snapshots at different times during adescent trajectory in a velodromequalification time trial (b,c,d correspond
to 0.42, 0.84, 1.28 s after the descent). (e) Top five track times taken from the qualification round of the Rio 2016 Olympic games
[12]. (f ) Schematic diagram of a descent trajectory in a velodrome (side view). (Online version in colour.)

[4–6], the motion of a disc on a hemisphere [7], the elastic Brachistochrone (elastochrone) [8], and
even the quantum Brachistochrone problem [9].

In sports, a natural extension of the Brachistochrone problem is the motion of a cyclist in
a velodrome. Track cyclists compete to move around the sloped velodrome surface as fast as
possible, much like a higher dimensional Brachistochrone. While there are many different types
of velodrome races, the type of race that lends itself most obviously is the qualification time trial
[10]. In this case, cyclists complete three and a half laps of the velodrome, where only the time
for the final 200 m of the last lap is measured. The cyclists build up speed on a single high gear
roughly over the first two laps [11], staying as high up on the velodrome slope as possible to
maintain large potential energy. Then, on the final lap they descend the slope and sprint around
the track as fast as they possibly can (figure 1f ). Similar to the Brachistochrone, the choice of the
descent trajectory is critical. Time is lost if the descent trajectory is too steep or too shallow. The
optimal trajectory must balance the exchange between potential and kinetic energy perfectly.

In figure 1a–d, we show four early time snapshots taken from a velodrome qualification race at
the velodrome of Montigny le Bretonneux, France. As the cyclist enters the final lap (at an initial
speed of around 58 km h−1), they descend into the sharp corner of the velodrome over a period
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of around 1 s. After the descent, cyclists typically remain at the black line, which is at the bottom
of the slope, within around 1 m of the blue côte d’azur lane (figure 1d), for the duration of the final
lap. Hence, the initial descent is of critical importance because it is the only period of the race
where variation is observed between different cyclists. In figure 1e, we also display the final times
of the top five cyclists from the Rio 2016 Olympic games. The difference in time between cyclists
is usually of the order of one tenth, and sometimes one hundredth of a second (corresponding
to 0.1–1% of the total time). Hence, if the track time can be reduced even slightly by choosing a
better descent trajectory, this can have a significant impact on the final ordering of the athletes.

In this study, we show how to find the optimum trajectory of a cyclist in a velodrome by
modifying the classical formulation of the Brachistochrone problem, and treating the cyclist
as an active particle on a surface (i.e. a particle that can apply forces as it moves). Since the
velodrome track is naturally decomposed into straight and curving sections, we start by studying
two canonical cases of motion of a cyclist on a plane and a cone, for which analytical solutions
can be found using the Euler–Lagrange equations. Then, using geometrical data taken from
the velodrome of Montigny le Bretonneux, we reconstruct the velodrome surface and solve the
corresponding optimization problem using a numerical method that extends from the previous
examples. After validating the model by comparison against cyclist velocity and power data, we
discuss the various parameters of the problem, as well as the effects of fatigue.

2. Brachistochrone on a plane
Before discussing motion on two-dimensional surfaces, let us first summarize the classic
Brachistochrone problem, formulated in the Euler–Lagrange setting [1,13].

Consider a particle of mass m that moves in the vertical plane (x, z) under gravity g. This is
equivalent to motion on a two-dimensional plane in the case where the plane makes an angle
α = π/2 with the horizontal, where α is illustrated in figure 2a. We seek to minimize the total time
for the particle to move along a trajectory from position (0, 0) to (L, −H), which is given by

T =
∫ s0

0

1
v(s)

ds, (2.1)

where s is the arclength of the trajectory, varying from 0 to s0, and v =
√

ẋ2 + ż2 is the speed of the
particle. Neglecting friction, the total energy of the particle is conserved, such that

1
2

mv2 + mgz = 0, (2.2)

where we have assumed that the particle is initially at rest. Hence, by using (2.2) and by rewriting
(2.1) in terms of x and z, where ds = dx

√
1 + (dz/dx)2, the total time is

T = 1√
2g

∫L

0

√
1 + (dz/dx)2

−z
dx. (2.3)

This quantity (2.3) can be minimized by solving the Euler–Lagrange equation for the function
z(x), which is

2z
d2z
dx2 +

(
dz
dx

)2
+ 1 = 0, (2.4)

together with the boundary conditions
z(0) = 0 (2.5)

and
z(L) = −H. (2.6)

In the case where the final height −H is included as an optimization variable, the boundary
condition (2.6) is replaced by

dz
dx

(L) = 0. (2.7)
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Figure 2. Cycling on the planar Brachistochrone (a) and the Brachisto-‘cone’ (b,c). In the planar case, we choose a slope angle
of α = 20◦ and a total distance of L= 40 m. In the cone case we take α = 10◦, a starting radius of R0 cosα = 10 m and a
total rotation of θ1 − θ0 = π/4. (b) Aerial view. (c) Plan view. The displayed trajectories correspond to the optimum path
with no forcing parallel to the direction of motion F‖ = 0 (calculated analytically and numerically) and with parallel forcing
due to pedalling and drag F‖ = Fp − Fd (calculated numerically). (Online version in colour.)

It is well known that the solution is a cycloid which, in the case of the latter boundary condition,
is given parametrically by

x(λ) = L
π

(λ − sin λ), z(λ) = − L
π

(1 − cos λ), (2.8)

for λ ∈ [0, π ].
To extend the above formulation to motion on a sloping plane is relatively straightforward. Let

us now consider a coordinate system (x, y, z), in which the particle moves on a plane z = y tan α

that makes a constant angle α with the horizontal. By considering the rotated coordinate Y =
y/ cos α that lies in the plane, it follows that the total energy is given by

1
2

m
(

ẋ2 + Ẏ2
)

+ mgY sin α = 0. (2.9)

Hence, the total time for the descent is

T = 1√
2g sin α

∫L

0

√
1 + (dY/dx)2

−Y
dx, (2.10)
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which is equivalent to the classic Brachistochrone but with a modified gravity g′ = g sin α, and
a trajectory Y(x) that lies in the plane. Hence, the parametric solution is the same as before,
equation (2.8), except with z replaced by Y, and a total descent time multiplied by a factor of
1/

√
sin α.

3. Brachisto-‘cone’
The next most canonical case of a two-dimensional surface is a cone. This is of particular interest
to track cycling because the sharp corner at each end of the velodrome is approximately conical,
as we discuss later. By converting the above formulation to cylindrical polar coordinates, it is
possible to write down the energy equation for motion on the surface of a cone, which is

1
2

mv2 + mg(R − R0) sin α = 0, (3.1)

where R = r/ cos α is the rotated radial coordinate and R0 is the initial position of the cyclist.
Unlike the planar case, where the initial position is irrelevant, in the conical case R0 is a necessary
parameter, and is related to the curvature at the initial position. The resulting time-minimization
problem is written in terms of the integral

T = 1√
2g sin α

∫ θ1

θ0

√
R2 + (dR/dθ )2

R0 − R
dθ , (3.2)

where θ1 − θ0 is the angle traced out by the trajectory. The resulting Euler–Lagrange equation for
the trajectory R(θ ) is

d2R
dθ2 + 3R − 4R0

2(R0 − R)R

(
dR
dθ

)2
+ (R − 2R0)R

2(R0 − R)
= 0, (3.3)

with boundary conditions
R(θ0) = R0 (3.4)

and
dR
dθ

(θ1) = 0. (3.5)

The Brachisto-‘cone’ problem (3.3) is different from the Brachistochrone problem (2.4) since it
also takes into account the effects of rotation, such as the centrifugal force. Such forces play an
important role in track cycling, because they allow the cyclist to perform tight corners at high
velocity by tilting their bike dramatically in the direction of the bend.

Owing to the more complicated form of (3.3) neither an explicit nor a parametrized closed-
form solution is available (though one constant of integration can be found by considering the
Beltrami identity). However, we can solve the boundary value problem (3.3)–(3.5) numerically. In
the subsequent sections, we refer to the solutions in the two cases of the planar Brachistochrone
and the Brachisto-‘cone’ as analytical, but indeed only the planar case is in closed form.

4. Cycling Brachistochrone
Let us replace the particle in the above examples by a point cyclist (or an active particle). In this
case, the cyclist applies a pedal thrust in the direction of motion and experiences aerodynamic
drag, such that the total energy is no longer constant. Thus, the dynamics of the cyclist in the
planar case, which we derive in appendix A, are given by

mẍ = ẋF‖
v

− ẏF⊥
v cos α

(4.1)

and

mÿ = −mg sin α cos α + ẏF‖
v

+ ẋ cos αF⊥
v

, (4.2)

where F⊥(t) is the leaning force perpendicular to the direction of motion (which does not
contribute to the energy) and F‖(t) is the force parallel to the direction of motion, which is
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divided into a pedal thrust and a drag force F‖ = Fp(t) − Fd(t). We model the drag using the
parametrization Fd = 1/2ρCdAv2, where Cd is the drag coefficient, A is the combined cross-
sectional (or exposed) surface area of the cyclist and the bicycle, and ρ is the density of air [14–17].
Note that the only contribution from the normal force is the gravity term in (4.2). The total energy
of the system satisfies

d
dt

(
1
2

mv2 + mgY sin α

)
= F‖v. (4.3)

Clearly, if we set F‖ = 0 then (4.3) leads to the former Euler–Lagrange formulation. If F‖ �= 0 then
we cannot solve the problem analytically, but a numerical solution can be found which we discuss
shortly. For the case of the Brachisto-‘cone’ with forcing, the dynamics are given by (A 28)–(A 29)
in appendix A, and the energy equation is identical to (4.3), except with Y replaced by R. Before
discussing the solutions to these cases, we first need a model for the pedalling force, and hence
the cyclist physiology.

5. Cyclist physiology
To model the pedalling force Fp(t), there are certain mechanical and physical considerations that
must be taken into account. In particular, since track cyclists must choose a fixed gear ratio for the
duration of the race, the pedalling force depends strongly on the instantaneous pedalling rate,
and this relationship depends on the physiology of the individual cyclist.

As shown by Dorel et al. [10], the pedal torque that a cyclist applies in a sprint is a linearly
decreasing function of the pedalling frequency. This linear relationship is characterized by two
coefficients Tmax and ωmax, which correspond to the maximum possible torque (occurring at zero
pedalling frequency) and the maximum possible pedalling frequency (occurring at zero torque).
Each cyclist has a sprint performance characterized by these two parameters, and these are easily
measured with a pedalling experiment.

The pedalling torque and frequency are related to the pedalling force Fp and speed v via the
development D, which is the distance travelled by one single rotation of the pedals (analogous to
the gear). Hence, the pedalling force is given by the linear relationship

Fp = 2πTmax

D

(
1 − 2πv

Dωmax

)
. (5.1)

This relationship is similar to the force–velocity equation related to muscle physiology, sometimes
called the Hill equation [18]. Note that (5.1) is only valid for pure anaerobic respiration, and does
not include the effects of fatigue. We will discuss the effects of fatigue later in §6.

In figure 2, we plot solutions to both the planar Brachistochrone and the Brachisto-
‘cone’ problem. Light blue dashed curves correspond to the analytical solution in the case of
zero pedalling and drag force F‖ = 0. Black curves correspond to the numerical solution to
the equivalent optimal control problem, which is achieved by formulating an interior point
constrained optimization [19,20] using the dynamics (4.1)–(4.2) to govern the variables x(t), y(t),
and using the forcing F⊥(t) as a control function (see appendix B). The analytical solution is useful
for validating the numerical approach, giving us confidence when applying it to the case of non-
zero pedalling and drag force, for which an analytical solution is not available. Such solutions (for
F‖ �= 0) are shown on the same plot with dotted blue curves.

To calculate these trajectories, we choose values for the model parameters that correspond to
realistic cycling scenarios. We take the combined mass of the cyclist and the bike as m = 86 kg,
and the physiological characteristics ωmax = 25 rad s−1, Tmax = 260 Nm correspond to data taken
from an elite athlete [10]. The product of the drag coefficient and the exposed surface area is
CdA = 0.22 m2, which is equivalent to a streamlined cycling position and modern equipment
[15–17,21–23]. Finally, we choose a development of D = 8.5 m, which is typical for velodrome
sprint qualification trials.

In figure 3, we illustrate how each of these parameters affects cyclist performance. We display
the trajectory and velocity profile for the planar cycling Brachistochrone (from figure 2a) which
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Figure 3. Study of the cycling physiology parameters. In the base case, we have Tmax = 260 Nm, ωmax = 25 rad s−1, and
D= 8.5 m. In each of the other cases, we vary just one of these parameters and plot the trajectory (a) and the velocity (c).
The equilibrium velocity (5.2) for each case is indicated in (c), and the dependence on D is shown in the inset (b). (Online version
in colour.)

we use as a base case (though extended to an 80 m track), as well as three other curves for
which we perturb each of the three physiological parameters Tmax, ωmax and D. In each case,
the perpendicular force profile F⊥(t) and total time are fixed at their base case values. The
perturbed values of each of these parameters (Tmax = 200 Nm, ωmax = 16 rad s−1, D = 10 m) result
in a reduced velocity and a shallower descent trajectory. In the case of Tmax and ωmax, this can be
explained by a reduction in the forward thrust and maximum velocity, respectively. The effect of
increasing the development D is less obvious, since this simultaneously increases the maximum
velocity while decreasing the maximum thrust. However, this becomes more clear by considering
the equilibrium velocity

veq =
−4π2Tmax + 2

√
πTmax(4π3Tmax + ρCdAD3ω2

max)

ρCdAD2ωmax
, (5.2)

which is equivalent to a balance between the pedalling force and the drag force. As indicated by
figure 3b, veq is a non-monotonic function of D for typical parameter values, and has a maximum
at D ≈ 11.5 m. Therefore, while increasing D from 8.5 m to 10 m raises the equilibrium velocity,
the pedal force is simultaneously reduced, resulting in a longer time to achieve equilibrium, and
hence a slower, shallower trajectory.

6. From Brachistochrone to velodrome

(a) Validation
The next step is to apply the above method to find the optimum trajectory on a real velodrome
track and validate the model by comparison with cyclist velocity and power data. As a case
study, we choose the velodrome of Montigny le Bretonneux in France. For this velodrome, the
inside lane is composed of two straight lines of length L = 38 m, connected by two half-ellipses of
semi-major and semi-minor axes a = 29.8 m and b = 24.2 m (figure 4a). Since the velodrome slope
varies as one moves around the track, it is convenient to make use of the tangent and normal
coordinates measured on the inside lane (s, n) (see the schematic diagram in figure 4c). In terms
of these coordinates, the velodrome surface is written simply as z = n tan α(s), where the width
of the surface is a constant W = 7.9 m. Therefore, unlike the previous examples, motion on the
velodrome is bounded, such that 0 ≤ n ≤ W cos α. In figure 4b we plot the angle α(s), which was
measured at the race track using an angle-meter. The slope angle is approximately sinusoidal,
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Figure 4. (a) Three-dimensional reconstruction of the velodrome of Montigny le Bretonneux. (b) The velodrome slope angle
α measured experimentally as a function of distance around the track s. (c) Schematic diagram of the velodrome surface
z = n tanα(s), illustrating the tangent and normal coordinates (s, n), and the cyclist position and force x(t), F(t). (Online
version in colour.)
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Figure 5. (a) Brachistochrone on a velodrome, viewed from above, illustrating the positions that correspond to the snapshots
in figure 1a–d. We also indicate the different curved and straight regions of the velodrome, as well as the start and finish lines
for the final 200 m of the track. (b,c) Corresponding speed v and power P profiles, compared with measured data from an elite
athlete for three different race attempts. Straight regions of the track are illustrated with shading. (Online version in colour.)

varying between 14◦ in the middle of the straight sections to 45◦ in the middle of the curved
sections. The reconstructed velodrome surface is shown in figure 4a.

Based on the previous canonical examples, we formulate and solve a numerical optimization
problem for the trajectory, where the dynamics in the straight regions are similar to (4.1) and (4.2),
and for the elliptical sections of the velodrome we consider a small perturbation from the cone
example, where the ellipticity ε = a/b − 1 = 0.23 is treated as a small parameter in an asymptotic
expansion (see appendix A).

In figure 5, we display the optimal trajectory, as well as plots of velocity v and power P = vFp

as functions of time [24]. For this example, we use the same parameter values as before, except
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with initial position s(0) = 0, n(0) = W cos α(0), and an initial velocity of 58 km h−1 purely in the
x-direction, which corresponds to the typical speed before descent for Olympic athletes (further
discussion on optimizing the initial conditions of the problem is given in the next section). The
optimal trajectory is very similar to the strategy employed by athletes, descending before the first
corner and then hugging the inside lane thereafter. The descent follows closely the position of
the cyclist in the snapshots in figure 1a–d, which we indicate approximately with white stars. The
velocity and power in figure 5b,c are compared to data taken from an elite cyclist in the velodrome
of Montigny le Bretonneux over three different race attempts. The close agreement between our
model and the data indicates that the cyclist’s trajectory is already nearly optimal, and illustrates
the validity of our model. Furthermore, the time to complete the final 200 m of the lap is around
9.7 s, which is close to high-ranking Olympic performance, as seen in the table in figure 1e.

(b) Discussion of the parameters and the effects of fatigue
Although we have so far only discussed optimizing the cyclist trajectory, there is also the question
of the optimal choice of the initial position and velocity of the cyclist. In this section, we discuss
these initial conditions, including how fatigue plays a role in their optimal values.

Written in terms of the tangent and normal coordinates, there are four initial conditions s(0),
n(0), ṡ(0) and ṅ(0). We find that the optimum value of n(0) is always given by n(0) = W cos α(s(0)),
which is in accordance with our observation that track cyclists always begin their descent from
the top of the velodrome ramp. This choice of n(0) can be explained by the desire to maximize
potential energy before descent. Note that due to the proximity of the velodrome boundary, this
also constrains the initial descent angle of the cyclist, such that ṅ(0) = 0. Hence, the initial speed
is simply v(0) = ṡ(0).

To determine the remaining optimum parameter values, s(0) and ṡ(0), one must consider the
effects of fatigue. As discussed by [10], the relationship (5.1) is only valid whilst the cyclist
sprints using pure anaerobic respiration and, in reality, this can only last for around ∼ 5 s.
Afterwards, the effects of fatigue take action, and eventually respiration becomes aerobic. After
this point, the power exerted by the cyclist deviates towards a near-constant plateau of around
P0/m = 6.35 W kg−1 [25]. The initial velocity is explained by balancing the pedalling force that
corresponds to constant aerobic power (P = P0) and the drag force, such that P0/v ∼ 1/2ρCdAv2,
which for a cyclist of mass 86 kg gives a solution v = 58 km h−1. If the cyclist were to choose a
larger initial velocity than this, they would risk eating up some of their energy budget during
the final lap. Hence, they choose to start the descent at the maximum possible velocity without
triggering the effects of fatigue prematurely.

The final parameter of interest s(0) is one of the main differences between cyclist strategies.
Cyclists typically start the descent between s = 3 m and s = −11 m (where s is measured with
respect to the finish line). The descent position s(0) is chosen as a tradeoff between speed and
fatigue. If the descent starts too late, then it is not possible to build up enough speed for the final
lap. On the other hand, if the descent starts too early then, although the final lap will commence
at high velocity, the cyclist will quickly become tired.

According to [25], the pedalling power decays exponentially due to fatigue, where the formula

P = P0 + (Pmax − P0)e−t/τ (6.1)

gives a good fit with cyclist data using parameter values Pmax/m = 17.4 W kg−1 and τ = 38 s. The
choice of starting position should be such that the cyclist crosses the finish line before fatigue
causes any deceleration. Hence, we expect the peak velocity vpeak to be precisely at the finish line.
Therefore, at this moment, we expect a perfect equilibrium between the pedalling power (6.1) and
the drag power. From this balance, we derive the sprint timescale

tsprint = τ log

⎛
⎝ Pmax − P0

1/2ρCdAv3
peak − P0

⎞
⎠ . (6.2)
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During the London 2012 Olympics qualification trials, starting positions varied between s(0) =
3 m and s(0) = −11 m, with corresponding total sprint times (including the descent) of tsprint =
13–15 s. According to (6.2), these sprint times correspond to peak velocity values of around
vpeak = 74–75 km h−1, which are close to observations (e.g. vpeak = 77 km h−1 in figure 5). Hence,
this simple scaling argument provides a good explanation for the choice of starting position. To
illustrate how the descent position s(0) affects the shape of the descent trajectory, we display
different calculated optimum trajectories for various values of s(0) in appendix C (figure 7).

7. Concluding remarks
While the classic Brachistochrone problem is limited to one dimension, we have shown how a
similar formulation can extend the problem to motion on a plane or a cone, for which the Euler–
Lagrange equations yield analytical solutions. By extending the classic Brachistochrone using
these two canonical cases, as well as including the effects of cyclist physiology, we have shown
how to optimize the trajectory of a cyclist in the real example of the velodrome in Montigny le
Bretonneux, finding very close agreement with measured athlete data. In addition to the optimum
trajectory, we have also discussed optimizing the initial conditions before descent, where the
effects of fatigue play a role.

This work not only paves the way for future studies of cycling, but also has implications for
research across the field of physics on the topic of active particles on surfaces. For future work, the
dynamics of other cyclists in the race could be included [26], where the effects of slipstreaming
and racing psychology must be taken into account [27].

It should be noted that, while all velodromes consist of two straight and two rounded
sections, each design (created by a velodrome architect) is subtly different, and this has important
consequences for cyclist strategies. In particular, the velodrome angle α(s) and the corner
ellipticity a/b are key, since they determine how and when the cyclists should perform their
descent trajectory. In practice, cyclists compete on many different velodrome tracks, often
adjusting their strategy for the specific velodrome at hand. However, the theoretical tools
developed here can be used by trainers to optimize the descent trajectory for any velodrome,
given a priori knowledge of these shape parameters.

Data accessibility. Code written to solve the Brachistochrone on a velodrome problem can be found on the
personal website of G.P.B.: https://yakari.polytechnique.fr/people/benham/cycling_code/brachistochrone/
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athletes. As director of the research, C.C. identified the problem to work on and led the project through to its
completion. All authors gave final approval for publication.
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Acknowledgements. We thank Tullio Traverso and Benjamin Lallemand for useful discussions. We gratefully
acknowledge the support from Ecole Polytechnique for the research programme Sciences 2024.

Appendix A. Derivation of the governing equations

(a) Cartesian coordinates
Consider the motion of a particle on a two-dimensional surface z = f (x, y) under gravity without
any other external forcing. The Lagrangian of the system is given by the kinetic energy minus the
potential energy:

L= 1
2

m
(

ẋ2 + ẏ2 + ż2
)

− mgz. (A 1)
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Since the motion is confined to the surface, we can eliminate z to give

L= 1
2

m

(
ẋ2

(
1 + ∂f

∂x

2
)

+ ẏ2

(
1 + ∂f

∂y

2
)

+ 2
∂f
∂x

∂f
∂y

ẋẏ

)
− mgf . (A 2)

The Euler–Lagrange equations for this system can be rearranged to give two second order
differential equations for x(t) and y(t), which are

mẍ = −
∂f
∂x mg + m ∂f

∂x

(
∂2f
∂x2 ẋ2 + 2 ∂2f

∂x∂y ẋẏ + ∂2f
∂y2 ẏ2

)
1 + ∂f

∂x
2 + ∂f

∂y
2 (A 3)

and

mÿ = −
∂f
∂y mg + m ∂f

∂y

(
∂2f
∂x2 ẋ2 + 2 ∂2f

∂x∂y ẋẏ + ∂2f
∂y2 ẏ2

)
1 + ∂f

∂x
2 + ∂f

∂y
2 . (A 4)

These equations simplify by noticing firstly that there is no acceleration in the normal direction to
the surface

1√
1 + ∂f

∂x
2 + ∂f

∂y
2

⎛
⎜⎜⎜⎜⎝

− ∂f
∂x

− ∂f
∂y
1

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎝ẍ

ÿ
z̈

⎞
⎟⎠= 0 (A 5)

and secondly that the vertical acceleration is given by

z̈ = ẍ
∂f
∂x

+ ÿ
∂f
∂y

+ ∂2f
∂x2 ẋ2 + 2

∂2f
∂x∂y

ẋẏ + ∂2f
∂y2 ẏ2. (A 6)

Hence, (B 3) and (B 4) reduce to

mẍ = −
∂f
∂x mg

1 + ∂f
∂x

2 + ∂f
∂y

2 (A 7)

and

mÿ = −
∂f
∂y mg

1 + ∂f
∂x

2 + ∂f
∂y

2 . (A 8)

Now consider that the particle is pushed parallel and perpendicular to the direction of motion by
forces F‖ and F⊥, respectively. The unit vector in the direction of motion is given by

ˆ̇x = 1
v

⎛
⎜⎜⎝

ẋ
ẏ

ẋ
∂f
∂x

+ ẏ ∂f
∂y

⎞
⎟⎟⎠ (A 9)

and the unit vector perpendicular to the direction of motion, which also lies in the tangent plane
of the surface, is given by

p̂ = 1

v

√
1 + ∂f

∂x
2 + ∂f

∂y
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ∂f
∂x

∂f
∂y

ẋ − ẏ

(
1 + ∂f

∂y

2
)

∂f
∂x

∂f
∂y

ẏ + ẋ

(
1 + ∂f

∂x

2
)

− ∂f
∂x

ẏ + ∂f
∂y

ẋ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A 10)
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We take the parallel and perpendicular forces as F‖ = F‖ ˆ̇x and F⊥ = F⊥p̂, without loss of generality.
Therefore, the full system of dynamical equations becomes

mẍ = −
∂f
∂x mg

1 + ∂f
∂x

2 + ∂f
∂y

2 + ẋF‖
v

−

(
∂f
∂x

∂f
∂y ẋ + ẏ

(
1 + ∂f

∂y
2
))

F⊥

v

√
1 + ∂f

∂x
2 + ∂f

∂y
2

(A 11)

and

mÿ = −
∂f
∂y mg

1 + ∂f
∂x

2 + ∂f
∂y

2 + ẏF‖
v

+

(
∂f
∂x

∂f
∂y ẏ + ẋ

(
1 + ∂f

∂x
2
))

F⊥

v

√
1 + ∂f

∂x
2 + ∂f

∂y
2

. (A 12)

Note that rate of change of energy is given by

dE
dt

= m

(
ẍẋ

(
1 + ∂f

∂x

2
)

+ ÿẏ

(
1 + ∂f

∂y

2
)

+ ∂f
∂x

∂f
∂y

(
ÿẋ + ẍẏ

))+ mg
(

∂f
∂x

ẋ + ∂f
∂y

ẏ
)

. (A 13)

By inserting (A 11) and (A 12) into (A 13), we find

dE
dt

= vF‖. (A 14)

Hence, the contributions from the gravitational and perpendicular forces are zero (as expected),
whereas the contribution from the parallel force is equivalent to the applied power.

For the planar Brachistochrone, we have ∂f/∂y = tan α and ∂f/∂x = 0. In this case, the
governing equations reduce to

mẍ = ẋF‖
v

− ẏF⊥
v cos α

(A 15)

and

mÿ = −mg sin α cos α + ẏF‖
v

+ ẋ cos αF⊥
v

. (A 16)

The corresponding energy equation is

d
dt

(
1
2

m
(

ẋ2 + ẏ2 sec2 α
)

+ mgy tan α

)
= vF‖, (A 17)

or written in terms of the rotated variable Y = y/ cos α, we get

d
dt

(
1
2

mv2 + mgY sin α

)
= vF‖. (A 18)

(b) Cylindrical polar coordinates
Following the same steps as before, the Lagrangian in cylindrical polar coordinates is

L= 1
2

m

(
ṙ2

(
1 + ∂f

∂r

2
)

+ θ̇2

(
r2 + ∂f

∂θ

2
)

+ 2
∂f
∂r

∂f
∂θ

ṙθ̇

)
− mgf . (A 19)

The resulting Euler–Lagrange equations, after simplification, are

m
(

r̈ − rθ̇2
)

= − mg ∂f
∂r

1 + ∂f
∂r

2 + 1
r2

∂f
∂θ

2 (A 20)

and

m
(
rθ̈ + 2ṙθ̇

)= − mg 1
r

∂f
∂θ

1 + ∂f
∂r

2 + 1
r2

∂f
∂θ

2 . (A 21)
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The unit vector in the direction of motion is given by

ˆ̇x = 1
v

⎛
⎜⎜⎝

ṙ
rθ̇

ṙ
∂f
∂r

+ θ̇
∂f
∂θ

⎞
⎟⎟⎠ (A 22)

and the unit vector perpendicular to the direction of motion is given by

p̂ = 1

v

√
1 + ∂f

∂r
2 + 1

r2
∂f
∂θ

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f
∂r

1
r

∂f
∂θ

ṙ +
(

1 + 1
r2

∂f
∂θ

2
)

rθ̇

−∂f
∂r

1
r

∂f
∂θ

rθ̇ −
(

1 + ∂f
∂r

2
)

ṙ

−1
r

∂f
∂θ

ṙ + ∂f
∂r

rθ̇

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A 23)

Hence, the governing equations are

m
(

r̈ − rθ̇2
)

= −
∂f
∂r mg

1 + ∂f
∂r

2 + 1
r2

∂f
∂θ

2 + ṙF‖
v

+

(
∂f
∂r

1
r

∂f
∂θ

ṙ + rθ̇
(

1 + 1
r2

∂f
∂θ

2
))

F⊥

v

√
1 + ∂f

∂r
2 + 1

r2
∂f
∂θ

2
(A 24)

and

m
(
rθ̈ + 2ṙθ̇

)= −
1
r

∂f
∂θ

mg

1 + ∂f
∂r

2 + 1
r2

∂f
∂θ

2 + rθ̇F‖
v

−

(
∂f
∂r

1
r

∂f
∂θ

rθ̇ + ṙ
(

1 + ∂f
∂r

2
))

F⊥

v

√
1 + ∂f

∂r
2 + 1

r2
∂f
∂θ

2
. (A 25)

The rate of change of energy is given by

dE
dt

= m

((
r̈ − rθ̇2

)
ṙ

(
1 + ∂f

∂r

2
)

+ (
rθ̈ + 2ṙθ̇

)
rθ̇

(
1 + 1

r2
∂f
∂θ

2
)

+∂f
∂r

∂f
∂θ

((
r̈ − rθ̇2

)
θ̇ + (

rθ̈ + 2ṙθ̇
) ṙ

r

))
+ mg

(
∂f
∂r

ṙ + ∂f
∂θ

θ̇

)
. (A 26)

Again, by inserting (A 24) and (A 25) into (A 26) we get

dE
dt

= vF‖. (A 27)

In the case of a cone, where ∂f/∂θ = 0 and ∂f/∂r = tan α, (A 24)–(A 25) reduce to

m
(

r̈ − rθ̇2
)

= −mg sin α cos α + ṙF‖
v

+ F⊥ cos α
rθ̇
v

(A 28)

and

m
(
rθ̈ + 2ṙθ̇

)= rθ̇F‖
v

− F⊥
cos α

ṙ
v

. (A 29)

The corresponding energy equation is

d
dt

(
1
2

m
(

ṙ2 sec2 α + r2θ̇2
)

+ mgr tan α

)
= vF‖, (A 30)

or written in terms of the rotated variable R = r/ cos α, we get

d
dt

(
1
2

mv2 + mgR sin α

)
= vF‖. (A 31)
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f q

R(f)

d(f)

(r, q)

Figure 6. Schematic diagram showing how we calculate the distance d(φ) between a point in the plane (r, θ ) and a point on
the ellipse (R(φ),φ). (Online version in colour.)

(c) Calculating surface gradients
As explained in the main text, the velodrome surface is written very simply in terms of the tangent
and normal coordinates, such that z = n tan α(s). Therefore, to solve the dynamical equations
above, we need to know how to convert the surface gradients (given in terms of Cartesian or
polar coordinates) in terms of s and n. In particular, we have the following chain rule identities:

∂f
∂x

= ∂f
∂s

∂s
∂x

+ ∂f
∂n

∂n
∂x

, (A 32)

∂f
∂y

= ∂f
∂s

∂s
∂y

+ ∂f
∂n

∂n
∂y

, (A 33)

∂f
∂r

= ∂f
∂s

∂s
∂r

+ ∂f
∂n

∂n
∂r

(A 34)

and
∂f
∂θ

= ∂f
∂s

∂s
∂θ

+ ∂f
∂n

∂n
∂θ

. (A 35)

In the straight regions of the velodrome, these calculations are straightforward, since s and n are
linearly related to x and y, such that

s = ±(y − yi), n = ±(x − xi), (A 36)

for some constants xi, yi, i = 1, 3, 5 (using the same region numbering as in the main text).
In the case of the curved sections, a little more thought is needed. First we note that if the

curved part of the velodrome were circular, rather than elliptical, s and n would be linearly related
to r and θ . Hence, as a simple approach, we consider a weakly elliptical shape (i.e. a perturbation
from a circle). For an ellipse with semi-major and semi-minor axes a(1 + ε) and a, respectively, the
curve is given by

R(θ ) = a(1 + ε)√
(1 + ε)2 cos2 θ + sin2 θ

, (A 37)

where ε � 1 is a small parameter. Expanding in powers of ε, and keeping only first-order terms,
we get

R(θ ) ≈ a(1 + ε sin2 θ ). (A 38)

Now, consider the distance from a point with polar coordinates (r, θ ) to a point on the ellipse with
coordinates (R(φ), φ), for some angle φ, as illustrated in figure 6. The distance between these two
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points is

d(φ) = |r − R| , (A 39)

or equivalently,

d(φ) =
√

(r cos θ − R(φ) cos φ)2 + (r sin θ − R(φ) sin φ)2. (A 40)

Considering that for a circle we have φ = θ , here we write φ = θ + εφ̂. By expanding (A 40) in
powers of ε, we find that d is given by

d ≈ (r − a) − (a sin2 θ )ε

+ a
16(r − a)

(8rφ̂2 + (r − a)(3 − 3 cos 4θ − 16φ̂ sin 2θ ))ε2. (A 41)

The normal coordinate n(r, θ ) is given by the minimum possible value of d, which corresponds to
some value φ̂∗. Clearly, it is not necessary to evaluate φ̂∗ to calculate n to first order, since we have

n ≈ (r − a) − (a sin2 θ )ε. (A 42)

However, we calculate φ̂∗ here since it will be necessary when evaluating s later. To find φ̂∗ we
solve the equation

dd

dφ̂
(φ̂∗) = 0, (A 43)

which has solution

φ̂∗ = (r − a)
r

sin 2θ . (A 44)

At a given angle φ, the arclength A along the ellipse is given by

A(φ) =
∫φ

0

√
R(φ)2 + R′(φ)2 dφ (A 45)

≈ a
(

φ + ε

(
φ

2
− 1

4
sin 2φ

))
, (A 46)

and the tangential distance corresponds to the arclength where φ = θ + εφ̂, such that

s ≈ a
(

θ + ε

(
θ

2
+ (3r − 4a)

4r
sin 2θ

))
. (A 47)

Hence, using (A 42) and (A 47), the surface gradients in the elliptical regions (A 34)–(A 35) can be
calculated directly.

Appendix B. Numerical optimization
In this appendix, we briefly describe our solution method for numerical optimization. As
described in the main text, for the case of non-zero forcing in the direction parallel to
the cyclist motion, no analytical solution for the optimal trajectory is available. However, a
numerical solution is found by formulating a time-minimization problem with dynamical system
constraints, and following the interior point method [19,20].

In the full velodrome case, the dynamical equations are given by (A 11) and (A 12) in the case
of Cartesian coordinates and (A 24) and (A 25) in the case of polar coordinates. In the simplified
cases of motion on a plane or a cone, the dynamical equations are (A 15)–(A 16) and (A 28)–(A 29).
To formulate the optimization problem, we first discretize the state variables in time, which are
either x(t) and y(t) in the Cartesian regions or r(t) and θ (t) in the polar regions, as well as the
control variable F⊥(t). Note that Fp(t) is neither a state variable nor a control variable, since it is
given by (5.1) in the main text. We denote the discretized state variables by Xi and the control
variable by Fi. We use a uniform discretization in time δt with N points, such that the total time
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5.5

Figure 7. Optimum descent trajectories for different starting positions between s(0)= 7 m and s(0)= −20 m. (Online
version in colour.)

is given by T = Nδt. The governing differential equations are discretized using a second order
forward Euler scheme, producing a system of algebraic equations

fj(X, F) = 0, j = 1 . . . 2N. (B 1)

There are 2N equations in total since there are always two state variables (either x and y or r and
θ ). It should be noted that for j = 1, 2, the corresponding equations (B 1) are precisely the initial
conditions

X1 = X0 (B 2)

and
1
δt

(
−3

2
X1 + 2X2 − 1

2
X3

)
= U0, (B 3)

where X0 and U0 represent the initial position and velocity of the cyclist.
In the case of the velodrome, as discussed in the main text, the cyclist enters between Cartesian

and polar regions. Therefore, it is convenient to split (B 1) into several partitions corresponding
to the dynamical equations in each of these regions. To impose continuity between regions, the
initial position and velocity (B 2)–(B 3) at the beginning of each region must be imposed to be the
same as the position and velocity at the end of the previous one. Hence, instead of solving one
optimization problem, we solve several coupled together via their initial conditions.

Another consideration that must be taken into account is that the cyclist has to remain within
the bounds of the velodrome at all times. The latter constraint is written in terms of the normal
coordinate n, which is given by (A 36) in the case of Cartesian coordinates, and (A 42) in the case
of polar coordinates, such that

0 ≤ n(Xi) ≤ W cos α(s(Xi)), i = 1 . . . N. (B 4)

To enforce the equality constraints (B 1) we use the quadratic penalty method. This involves
placing the equality constraints as a penalty in the objective function to be maximized, which is
written as

Maximize
F∈RN

J (F) := T − μ
∑

j=1:2N

fj (X, F)2 . (B 5)

The penalty parameter μ is chosen to be sufficiently large that (B 1) is imposed accurately, but not
too large that the problem becomes ill-conditioned. More details on the choice of μ are discussed
by [19]. To enforce the inequality constraints (B 4), we use the interior point method. This involves
using logarithmic barrier functions, similar to the quadratic penalty in (B 5). We make use of the
IpOpt implementation of the interior point method, as discussed by [20].

The optimization problem is solved numerically using Newton’s method [19], where gradients
are calculated using automatic differentiation in the JuMP package [28] of the Julia programming
language [29]. For N = 200, computation time on a laptop computer is around 10 s, proving a very
fast method.

Appendix C. Optimum trajectories for different starting positions
Calculated optimum trajectories for various starting positions s(0) are shown in figure 7.
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