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ABSTRACT 

This paper explores the dynamical response of a two-degree-of-freedom flat plate undergoing 

classical coupled-mode flutter in a wind tunnel. Tests are performed at low Reynolds number 

(Re ~ 2.5×104), using an aeroelastic set-up that enables high amplitude pitch-plunge motion. 

Starting from rest and increasing the flow velocity, an unstable behaviour is first observed at 

the merging of frequencies: after a transient growth period the system enters a low amplitude 

limit-cycle oscillation regime with slowly varying amplitude. For higher velocity the system 

transitions to higher-amplitude and stable limit cycle oscillations (LCO) with an amplitude 

increasing with the flow velocity. Decreasing the velocity from this upper LCO branch the 

system remains in stable self-sustained oscillations down to 85% of the critical velocity. 

Starting from rest, the system can also move toward a stable LCO regime if a significant 

perturbation is imposed. Those results show that both the flutter boundary and post-critical 

behaviour are affected by nonlinear mechanisms. They also suggest that nonlinear 

aerodynamic effects play a significant role. 
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NOMENCLATURE 

a distance in semi-chord from the mid-chord to the elastic axis, xCG b  

b half chord of the flat plate model, c 2  

c chord of the flat plate model 

CL aerodynamic lift coefficient, L 0.5ρU 2sc( )  

CM aerodynamic moment coefficient, M 0.5ρU 2sc2( )  

Dα    Dh viscous structural damping in pitch and plunge 

h position in plunge measured at the elastic axis (positive downward)  

h0 initial condition in plunge 

hLCO amplitude in plunge at LCO 

Iα inertia of the moving parts about the elastic axis 

Kα   Kh stiffness in pitch and plunge 

L aerodynamic lift force (positive upward) 

m mass of the moving parts 

M aerodynamic moment about the elastic axis (positive nose-up) 

Re Reynolds number, Uc ν  

gr   radius of gyration in semi-chords of the system about its elastic 

 centre, 2mbIα  

s span of the flat plate model 

Sα static moment of the model about the elastic axis 

tc thickness of the flat plate model 

U mean wind tunnel velocity 

Uc critical velocity 

cUU  relative velocity 
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αωbU  reduced velocity 

αx  distance in semi-chord from the elastic centre to the centre of gravity, bxCG  

CGx  distance from the elastic axis (EA) to the centre of gravity (CG), positive toward 

the trailing edge 

α pitch angle about the elastic axis (positive nose-up) 

α0 initial condition in pitch  

αLCO amplitude in pitch at LCO 

βα  coefficient of cubic spring in pitch 

ζ growth (or damping) rate of the response in plunge or pitch 

αη  hη  structural damping ratio in pitch and plunge 

µ solid/fluid mass ratio, m π ρ b2s( )  

ν kinematic viscosity 

ϕ phase angle by which the plunge leads the pitch 

ϕLCO phase angle by which the plunge leads the pitch at LCO 

αω  hω  uncoupled natural frequencies in pitch and plunge 

1ω  2ω  natural frequencies of the coupled system 

αωωh  ratio of plunge to pitch uncoupled natural frequencies 

 

1. Introduction 

Among the fluid-structure instabilities that can be experienced by a slender streamlined 

body in cross flow, classical flutter and stall flutter are probably the most thoroughly 

investigated. Observed since the early days of flight the classical flutter of airplane wing is a 

dynamic instability for which self-sustained oscillations of great violence occurs above a 

critical speed. Often called coupled-mode flutter this instability involves at least two modes of 

the system and, unlike the stall flutter, its onset does not rely on any flow separation. It can 

hence be observed on wing with no angle of attack if not properly designed. Theory of flutter 
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based upon linear unsteady aerodynamic formulations has been successfully developed to 

predict the critical conditions for the generic case of a two degrees of freedom “pitch-plunge” 

oscillating wing (Theodorsen, 1935; Sears, 1941). Since those early works the physical 

explanation of bending-torsion flutter has also been highlighted (see for example Fung, 1955 

or Bisplinghoff and Ashley, 1962). It is now well understood that the classical flutter relies on 

fluid-elastic coupling between the structural modes. Indeed combined plunging and pitching 

motions can produce, above a critical flow velocity, interactions and phase shifts in a way that 

energy is transferred from the flow to the structure. Another distinguishing feature of the 

coupled pitch-plunge flutter is that both frequencies tend to merge near the flutter condition 

(Dowell et al, 2004).  

Even though classical flutter is a well-known phenomenon, few investigations on the post-

critical behaviour have been made, except for nonlinear aeroelastic systems encountered in 

aeronautics (see Dowell et al, 2003).  Lee et al (1999) also presented an extensive review of 

nonlinear aeroelastic studies focusing on one-degree-of-freedom (pure pitch) or two-degree-

of-freedom (pitch-plunge) oscillating airfoils. According to those reviews most referenced 

studies focused on the impact of concentrated structural nonlinearities such as cubic stiffness 

(Lee and LeBlanc, 1986) or control surface freeplay (Conner et al, 1997) and on the effects of 

nonlinear aerodynamics due to shock wave motion in transonic flow (Schewe et al, 2003) or 

stall flutter of airfoil (Ericsson and Reding, 1971).  

Unlike classical flutter, stall flutter is a dynamic instability that does not depend on 

coupling (Naudascher and Rockwell, 1994). This phenomenon is of particular importance for 

wing operating at high angle of attack (Victory, 1943), for helicopter rotor blades (Ham and 

Young, 1966) and for wind turbine blades (Hansen et al, 2006). For wing or blade in stall 

flutter, torsion is the mode of vibration most commonly involved. The mechanism for energy 

transfer then relies on a dynamic stall process for which the flow separates partially or 

completely during each cycle of oscillation (Dowell, 2004; Bhat and Govardhan, 2013). Due 

to the nonlinear nature of the aerodynamic load involved, stall flutter is limited in amplitude 

(McCroskey, 1982; Li and Dimitriadis, 2007). Many studies have been devoted to the 

dynamic stall process experienced by a wing oscillating around the static stall angle of attack 

(McCroskey and Philippe, 1975; Carr et al, 1977) and to the aeroealastic response of a pure 

pitch or pitch-plunge airfoil in the post critical stall flutter condition (see for example Dunn 

and Dugundji, 1992; Price & Fragiskatos, 2000; Li and Dimitriadis, 2007; Sarkar and Bijl, 

2008; Razak et al, 2011). Among those studies only few have pointed out that classical flutter 

could also be limited in amplitude. Post-critical LCO have been experimentally observed by 

Dunn and Dugundji (1992) on a cantilevered wing at low angle of attack but they concluded, 
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based upon additional numerical calculations, that observed LCO were mainly due to a cubic 

hardening stiffness effect. Price and Fragiskatos (2000) performed numerical nonlinear 

aeroealastic studies on a two-degree-of-freedom structurally linear airfoil. They identified 

LCO beyond the critical velocity and a gradual increase of LCO amplitude with the velocity. 

They argued that LCO are due to the nonlinear nature of the aerodynamics but they also 

mentioned that their results should be taken carefully due to the fact that their dynamic stall 

model had not been validated for high amplitudes. As for stall flutter, it therefore appears that 

with no structural limitation classical flutter does not grow exponentially but also exhibit limit 

amplitude oscillation.  

In the new and challenging field of energy harvesting through fluid-structure instabilities, 

the coupled-mode flutter mechanism has been recently scrutinized (Peng and Zhu, 2009; Zhu, 

2012; Boragno et al, 2012). A greater focus on post-critical behaviour is however necessary in 

order to improve the characterization, physical understanding and modeling of the large 

amplitude self-sustained vibrations resulting from these instabilities. The aim of this paper is 

to provide experimental results in that context.  

The paper is organized as follows: the experimental set-up along with the relevant 

structural and aerodynamic parameters are presented in section 2. Flutter results are reported 

in section 3. Frequencies of the aeroelastic modes of the system are first presented for various 

flow velocities. Results are compared with linear theoretical prediction to confirm the 

observed critical velocity and coupled-mode flutter. The post-critical behaviour is then 

characterized, highlighting LCO amplitude and phase evolutions with the flow velocity along 

with the influence of initial perturbations on the dynamical response of the system. 

 

2. Experimental set-up 

The experiments were performed using a rigid flat and rectangular steel plate of span 

s=0.225m, chord length c =0.035m and thickness tc=0.0015m, corresponding to a thickness-

to-chord ratio of 4.3%. Dimensions are shown in Fig. 1. In order to limit the effect of the 

Reynolds number, no modification was made on the nose and tail of the model which is 

characterized by a rectangular cross section. 

The flat plate model was flexibly mounted in plunge and pitch in a small Eiffel wind tunnel 

(Fig. 2), with a closed rectangular test-section of 0.26 m width and 0.24 m height. A particular 

attention was paid to the design of a set-up that can allow high amplitude linear response in 

pitch and plunge. The chord dimension of the model was less than 15% of the height of the 

wind tunnel cross section in order to avoid blockage effects for high amplitude oscillations. 

End plates were mounted at each extremity of the flat-plate model in order to limit end 
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effects.  The set-up is shown in Figs. 1 and 2. The vertical stiffness of the system was set by 

two long steel laminated springs and two sets of additional linear springs. In order to limit the 

structural damping in rotation no bearings were involved in the design and the axis of rotation 

was linked to the laminated spring by point-tailstock mechanical connections. The rotational 

stiffness was set by two linear springs (see Figs. 1 and 2) and the elastic axis was fixed at a 

distance xcg ahead of the centre of gravity (see Fig. 3).  

Tests were performed for a mean velocity in the test-section varying from 5 to 13m/s, with 

a turbulence level less than 0.4% over this velocity range. In the present study the mean angle 

of attack of the model is set to zero.  

The two degrees of freedom ( )th  and ( )tα  were measured using two laser displacement 

sensors connected to a 24 bits resolution acquisition system. The first one directly measured 

the vertical plunging motion at the elastic axis, while the second one measured the combined 

movement in plunge and pitch. Recovery of the physical quantities ( )th  and ( )tα  was 

performed by numerical post-processing with an accuracy less than 2%. The sampling 

frequency was chosen as 1024Hz and spectral analysis was performed on time block over 8 

seconds which gives a frequency resolution lower than 0.125 Hz. 

 
 

 
 

Fig. 1. Schematic draw of the experimental set-up.  
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Fig. 2. Front view of the flat plate model in wind tunnel (left) and side view of the set-up 
(right).  

 

 

 
 

Fig. 3. Two dimensional flexibly mounted flat plate section model  
 

 

2.1 Structural parameters 

Since the elastic centre was not located at the centre of gravity, the two-degree-of-freedom 

system (see Fig. 3) was structurally coupled. The linearized equations of motion can then be 

expressed as following (Fung, 1955): 

 

m h+Dh
h+Kh h+ Sα α = − L,

Iα α +Dα α +Kαα + Sα h =M,
 (1) 

 

where the parameters m, Iα, Dh, Dα, Kh, Kα are the system’s mass, moment of inertia about the 

elastic axis, structural damping and stiffness in plunge and pitch, respectively. CGxmS =α  is 
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the static moment of the flat-plate model about the elastic axis. L and M are respectively the 

aerodynamic lift (positive upward) and pitching moment (positive leading-edge up) about the 

elastic axis, acting on the flat-plate model. 

 

Structural parameters of the system were identified under zero-wind velocity. A static 

weight calibration technique was used to measure the stiffness Kh and Kα. The force (and 

torque) versus displacement curves are shown in Fig. 4.  

 

 

Fig. 4. Stiffness static weight calibration in plunge (left) and in pitch (right) 

 

Results show that the bending stiffness behaves linearly in the range -0.6 ≤ h/b ≤ 0.6. On 

the other hand the stiffness in rotation is characterized by a small softening spring behaviour 

which is well described by the following cubic function for the restoring torque (where βα  is a 

cubic non linear coefficient): 

 

MK α( ) = Kα α +βαα
3( ),

Kα = 0.149, βα = −0.248.
 (2) 

 

Therefore, the stiffness in rotation has a quasi-linear behaviour in the range -25 deg ≤ α ≤  

25 deg, with a departure from the linear behaviour smaller than 6% for α ≈ 25 deg. For higher 

angles of rotation the stiffness smoothly reduces and for α ±50 degrees the restoring torque is 

19% lower than its linear approximation.  
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Free decay tests under zero wind conditions were performed for each degree of freedom 

taken independently (the other one being locked). Natural frequencies ωh and ωα are then 

obtained by spectral analysis. Pure structural damping values Dh and Dα were determined 

using a standard decrement technique to asses the damping ratios mKD hhh 2=η  and 

ααααη IKD 2= . Non dimensional values reported in Table 2 show that the damping ratio 

is very small in plunge 2.0≈hη % and significantly higher in pitch 5.1≈αη %. Free decay 

tests were performed for different amplitudes of initial conditions up to h0 / b ≈ 0.6 and α0 ≈ 

40 deg. Results showed that the structural damping behaves linearly in plunge but 

significantly increases in pitch for very low angle of attack ( 1<α  deg), because of the solid 

friction induced by the point-tailstock connection. As a consequence, a small mechanical 

initial perturbation was systematically given to the system for the identification of flutter 

conditions.  

 

Assuming that the structural damping is small, the inertia Iα and mass m of the moving 

parts of the set-up are found, using: 

 

Iα = Kα ωα
2,

m = Kh ωh
2.

 (3) 

 

Free decay tests have also been performed for the two-degrees of freedom system under 

zero wind conditions. From the measured natural frequencies ω1 and ω2 of the coupled system 

one can identify the static unbalance of the section model about the elastic axis using the 

following expression (see Bisplinghoff and Ashley, 1962): 

 

Sα = mIα 1−
ωh
2 +ωα

2

ω1
2 +ω2

2

"

#
$

%

&
'.  (4) 

 

Structural parameters of the system are summarized in Tab. 1. The half-chord b=c/2 was 

chosen as a reference length scale. Associated non-dimensional parameters are reported in 

Tab. 2 with αωωh the ratio of plunge to pitch natural frequencies, 2mbIrg α=  the non-

dimensional radius of gyration of the system about its elastic centre, m π ρ b2s( ) the 
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solid/fluid mass ratio and bxx CG=α  the non-dimensional distance from the elastic centre to 

the centre of gravity (counted positively toward the trailing edge). 

 

Table 1 

Structural parameters of the system (S.I. units) 

m Iα Dh Dα Kh Kα ωh ωα Sα xCG 
0.304 4.66×10-5 5.38×10-2 7.91×10-5 595.6 0.149 44.26 56.55 8.48×10-4 2.8×10-3 
 

Table 2 

Non dimensional parameters of the system 

αωωh  rg µ ηh ηα xα 
0.783 0.707 1170.3 0.002 0.015 0.159 

 

 

2.2 Flat plate steady aerodynamic results 

In situ measurements of the lift and moment coefficients of the flat plate model were 

performed using a static weight calibration technique under a wind velocity U≈10m/s (i.e. a 

Reynolds number close to 2.3×104) at various angles of attack. Results are compared in Fig. 5 

with the experiments of Fage and Johansen (1927) on a sharp-edged flat plate of thickness-to-

chord ratio of 3% at Re ≈105, along with those of Pelletier and Mueller (2000) on a flat plate 

model of thickness-to-chord ratio of 1.93% at Re ≈8×105. The pitching moment reported in 

Fig. 5 is defined about the mid-chord. 

 

In the low-angle linear region (α < 5 deg), results are consistent with the thin airfoil theory. 

The slopes of the lift curve and moment curve are obtained as ≈αddCL 6.2 and 

≈αddC mcM , 1.4, respectively, which corresponds to an aerodynamic centre location close to 

the first quarter chord. A smooth stall (gradual reduction of the lift-curve slope) occurs for α 

> 7 deg. According to Fage and Johansen (1927) the flat plate is characterized by a leading-

edge laminar separation bubble at very low angle of attack. Its length (from the leading edge 

to the reattachment point) increases gradually with the angle of attack until complete 

separation from the upper surface for a static stall angle close to 7.5 deg. In the present study 

the stall angle of attack is slightly lower which gives lower lift coefficients for 7 deg < α < 13 

deg. However the moment coefficient agrees well with the results of Fage & Johansen in the 

same range of angle of attack, with an abrupt decrease for α ≈ 7-8 deg which is due to the 

combination of a stalled lift coefficient and a centre of pressure location moving toward the 
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mid-chord. At high angle of attack 13 deg < α < 60 deg, the measured lift coefficient also 

agrees well with the results of Fage & Johansen but also reveals another “stall” behaviour for  

16 deg < α < 19 deg.    

 

 

Fig. 5. Flat plate lift coefficient (CL) and moment coefficient about the mid-chord (CM,mc) 

versus angle of attack. (Open circles): Fage and Johansen (1927), Re ≈105; (open squares): 

Pelletier and Mueller (2000), Re ≈8×105; (filled triangles): present study, Re ≈2.3×104. 

 

3. Low speed flutter results 

Experiments were performed with the flat plate model at zero mean angle of attack for a 

wind tunnel velocity ranging from 5 up to 13m/s (i.e. 1.17×104 < Re < 3.03×104). When the 

flow velocity is increased the system remains stable to any small initial perturbations up to a 

critical velocity Uc ≈10.5 m/s (Re ≈ 2.45×104). Beyond this critical velocity the system 

undergoes a coupled-mode flutter instability characterized by limit cycle oscillations that were 

studied up to U/Uc ≈1.2. For higher velocities the dynamics of the system are corrupted by a 

static divergence in the pitching degree of freedom due to the structural limitation of the 

experimental set-up.    

 

3.1 Frequencies evolution with the flow-velocity 

Free decay tests have been performed for various velocities in stable and post-stable 

conditions. Spectral analysis of the dynamical responses was used to identify the frequencies 
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of both aeroelastic modes of the system as a function of the wind velocity. Dimensionless 

results are reported in Fig. 6.  

 

 

Fig. 6. Dimensionless frequencies αωω and growth rate αωRp of the aeroelastic 

modes of the system versus reduced velocity. (Open squares and filled diamond): 

experimental results; dashed line: linear theoretical prediction (see section 3.2)  

 

For reduced velocities αωbU  > 4 both frequencies smoothly approach each other (the 

plunging frequency increasing while the pitching one decreases). For 6.10≈αωbU , 

responses in plunge and pitch are dominated by a single frequency 85.0≈αωω . This point 

corresponds to the critical condition (U=Uc) for which the system is unstable to any small 

initial perturbations and starts to flutter. For higher velocities the system exhibits stable quasi-

harmonic LCO for which the frequency is significantly higher but slightly reduces with the 

wind velocity to reach 88.0≈αωω  for U/Uc ≈ 1.2.   

 

3.2 Linear flutter prediction; eigenvalues evolution with the flow-velocity 

Dynamic eigenvalues of the two-degree-of-freedom aeroelastic system was calculated 
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using Eq. (1) and the linear Theodorsen’s formulation for the motion-induced lift and moment 

(Theodorsen, 1935): 
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 (5) 

 

Introducing the parameter bxa CG=  which is the distance in semi-chord from the mid-

chord to the elastic axis, the lift and moment coefficient derivatives around zero angle of 

attack ( αddCL  and αddCM ), and the so-called Theodorsen’s function ( )kC  which is a 

complex function of the reduced frequency Ubk ω=  for which an exact expression can be 

found in Fung (1955). 

For each flow velocity one can then calculate two oscillatory root pairs, each of the form 

ωipp R ±=  associated to the determinant of the aeroelastic system expressed in the Laplace 

transform variable (see Bisplinghoff and Ashley, 1962, for more details). Calculations were 

performed using the lift coefficient slope identified experimentally, ≈αddCL 6.2 and a 

moment curve slope corrected for an elastic axis at a distance CGx ahead of the mid-chord : 

≈αddCM 0.91. Dimensionless frequencies αωω and associated growth rate αωRp are 

reported in Fig. 6 in the velocity range of the experimental results.  

Theoretical predictions are observed to be in very good agreement with the experiments. 

They also confirm that the onset of instability is due to an aeroelastic mode associated with 

the plunging branch. Moreover the linear stability analysis predict a critical flutter velocity 

(for which the plunging branch growth rate becomes positive) ≈αωbUc 9.8 which is slightly 

lower than the one observed experimentally 6.10≈αωbUc . One can also notice that beyond 

the critical velocity the coupled-mode flutter frequencies which have been measured are very 

close to the theoretical pitching branch. 

  

3.3 Analysis of the dynamical response 

Below the critical velocity, i.e. for 6.10<αωbU , plunging and pitching responses to any 

small initial perturbation are both damped to reach a small turbulence-induced vibration 

regime (h/b < 0.005 & α < 0.1 deg.). 
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At the critical velocity ( 6.10≈αωbUc ) the system is unstable and any small initial 

perturbation is amplified. Plunging and pitching responses to an initial deflection in plunge 

h0/b ≈ 0.18 are reported on Fig. 7. The associated phase diagram is presented in Fig. 11.  

 

 

Fig. 7. Evolution of the plunge and pitch with non-dimensional time Ut/b at the critical 

velocity 6.10≈αωbUc  

 

After a small transient regime the vibrations in pitch and plunge both increase until the 

non-dimensional time reach 3107.1 ×≈btU  where the oscillation amplitudes saturate. One 

can then observe a limit-cycle oscillation regime with an amplitude varying slowly in time. 

For 3104×>btU  the LCO amplitudes in plunge and pitch are hLCO/b ≈ 0.22±0.04 and αLCO  

≈ 6.5±0.5 deg.  

 

Fig. 8 shows the evolution with time of the growth (or damping) rate ζ of both the 

plunging and pitching response along with the phase angle ϕ by which the plunge leads the 

pitch. Each point ζ was identified from the natural log difference of the amplitude of any two 

successive peaks (maximum or minimum) in plunge or pitch:  

 



15 

ςα,i =
δα,i

2π( )2 + δα,i( )2
,

δα,i = ln αmax,i+1( )− ln αmax,i( ),
                 

ς h,i =
δh,i

2π( )2 + δh,i( )2
,

δh,i = ln hmax,i+1( )− ln hmax,i( ).
 (6) 

  

With those definitions any growth (or damping) rate value can be directly compared to 

structural damping ratios hη  or αη . The evolution of the phase shift ϕ has been identified 

considering the time delay between any two successive peaks (maximum or minimum) in 

pitch and plunge:  

 

( ) ωϕ α ×−= ihii tt ,, maxmax
 or φi = tαmin ,i − thmin ,i( )×ω.  (7) 

 

With this definition ϕ is the phase angle by which the plunging motion leads the pitching 

motion, assuming that both pitch and plunge can be locally approximated by quasi harmonic 

expressions: ( ) ( )ϕω +≈ thth cos~  and ( ) ( )tt ωαα cos~≈ . 

 

 

Fig. 8. Time history of the growth (or damping) rate ζ  in pitch and plunge 

and phase angle ϕ between the plunge and the pitch; 6.10≈αωbUc  
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Starting from rest with an initial deflection h0/b ≈ 0.18 the plunging oscillation amplitude 

first decreases (ζ ≈ -2%) while the pitching amplitude strongly increases (ζ > 5%). After 3 

cycles for which ϕ ≈ 50 deg, both the pitch and plunge exhibit positive growth rate 0 < ζ < 

3% with an associated phase shift ϕ ≈ 30 deg. For 33 104107.1 ×<<× btU  significant 

oscillations of ζ  (±2%) and ϕ (between -20 deg and 20 deg) are responsible for the amplitude 

modulations in pitch and plunge. For 3104×>btU  the limit-cycle oscillations regime is 

characterized by a mean phase angle ϕLCO  ≈ 10 deg. Fig. 8 also show that the slow time 

varying amplitude observed in Fig. 7 is due to the phase angle fluctuation from ϕ  ≈ 20 deg 

(maximum growth) to ϕ  ≈ 0 deg (in phase regime for which the system is damped).   

For higher velocities, the dynamical response changes dramatically. This can be seen in 

Fig. 9 for a relative velocity U/Uc ≈1.08. After an initial transient growth of mechanical 

energy a first regime of low amplitude oscillations in pitch (α < 11 deg) is observed for 
33 108.2102.2 ×<<× btU . At the same time the response in plunge strongly decreases 

before growing again along with the pitching oscillations. The system then branches-off to a 

higher and stable limit cycle oscillations regime characterized by large harmonic oscillations: 

hLCO /b ≈ 0.4±0.05 and αLCO  ≈ 34±1 deg. The associated phase diagram (Fig. 11) also shows a 

switch of the phase angle between the pitch and the plunge from the initial transient growth 

regime to the high limit cycle oscillations regime.  

 

 

Fig. 9. Time response in plunge and pitch in the post critical regime U/Uc ≈1.08 
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This is confirmed in Fig. 10 showing the time history of the plunging and pitching growth 

rates along with the evolution of the phase shift ϕ. In the initial transient growth regime the 

phase angle ϕ increases from 20 deg ( 3105.0 ×≈btU ) to 60 deg ( 3108.1 ×≈btU ) where 

the growth rate is maximum (ζ ≈ 3%). For 33 108.2102.2 ×<<× btU the phase shift ϕ 

gradually decreases to reach ϕ  ≈ -80 deg for 3107.2 ×≈btU  and then suddenly drop down 

to ϕ  ≈ 90 deg. This quadrature phase shift between the plunge and the pitch is associated to a 

new growth of oscillations leading to high LCO characterized by a mean phase angle ϕLCO ≈  

145 deg. 

 

 

Fig. 10. Time history of the growth (or damping) rate ζ  in pitch and plunge 

and phase angle ϕ between the plunge and the pitch; U/Uc ≈1.08 
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Fig. 11. Phase diagram of the dynamical response for U=Uc and U/Uc ≈1.08 

 

3.4 Evolution of the limit cycle amplitude and phase angle with the wind velocity 

For each velocity beyond the critical flutter condition the amplitudes of oscillations 

associated to stable LCO regime were measured along with the mean phase angle between the 

pitch and the plunge response. Results are reported in Figs. 12 and 13. On those figures the 

first set of results was obtained for the system undergoing flutter from rest. Additional tests 

were also performed decreasing or increasing the flow velocity from a stable high amplitude 

LCO point. For decreasing flow velocity, results clearly show a hysteretic behaviour of the 

system which remains in a high amplitude LCO down to a relative velocity U/Uc ≈ 0.85. For 

lower velocity the system is damped. Increasing the velocity from a stable LCO position at 

U/Uc ≈ 0.86, the same LCOs have been observed with amplitudes that linearly increase with 

the relative velocity, reaching hLCO /b ≈ 0.5 and αLCO ≈ 44 deg at U/Uc ≈ 1.2. 

As shown in Fig. 13 the mean phase angle also changes with the velocity ratio. Starting 

from U/Uc ≈ 1.2 for which ϕLCO ≈ 60 deg, and decreasing the flow velocity, the phase 

gradually increases to ϕLCO ≈ 170 deg for the lower relative velocity U/Uc ≈ 0.85. 
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Fig. 12. LCO amplitude of the pitching and plunging response versus relative velocity 

 

 

 
Fig. 13. LCO phase evolution with the relative velocity 

 

3.5 Effect of initial conditions 

LCO observed beyond the linear flutter boundary and the hysteretic behaviour observed for 

decreasing flow velocity clearly show that the aero-elastic system is subject to nonlinear 

effects. It is known that initial perturbations can significantly affect the dynamic response of 

system governed by nonlinear mechanisms. Tests were then performed below and beyond the 



20 

critical velocity with different sets of initial conditions.  

Below the critical velocity, the system remains stable (i.e. its response is damped) for any 

low or moderate initial perturbations. Above the critical velocity (i.e. for U/Uc > 1) different 

sets of low, moderate or strong initial conditions have been tested. They showed that even 

though the transient regime can be significantly affected, the same stable LCO state was 

reached, with amplitudes and phase angle values consistent with those reported in Figs. 12 

and 13. The stability of the high amplitude LCO branch was also analyzed: for any small 

perturbation the motion systematically returns to the same LCO after a transient regime. For 

0.85 < U/Uc < 1, subcritical transitions have been observed for large perturbations of the 

system. Indeed the onset of strong vibrations leading to the high amplitude LCO branch can 

be triggered by initial pitch angle and/or plunge deflection such as : α0 >αLCO  and/or h0 > 

hLCO . On the other hand, the existence of an unstable subcritical LCO branch for 0.85 < U/Uc 

< 1 was not observed for any of the tested moderate initial perturbations α0 <αLCO  and/or h0 < 

hLCO. Low amplitude LCO regime was only observed for U=Uc. For higher velocity, this low 

amplitude LCO is unstable and systematically branches off to the stable high amplitude LCO.  

 

4. Conclusions 

The dynamical response of a two-degree-of-freedom flat plate section model undergoing 

coupled-mode flutter in a wind tunnel was studied. Tests were performed at low Reynolds 

number (1.17×104 < Re < 3.03×104) using an experimental set-up that enables high 

amplitude linear response in pitch and plunge for relative velocity up to U/Uc ≈ 1.2.    

Flutter boundaries were studied as well as the post-critical behaviour. Beyond the flutter 

boundary, stable LCO arise with amplitude increasing with the flow velocity. For U/Uc ≈ 1.2, 

plunging and pitching amplitudes reach hLCO /b ≈ 0.5 and αLCO ≈ 44 deg with a mean phase 

angle by which the plunge leads the pitch, ϕLCO ≈ 60 deg. LCO have also been observed 

below the critical flutter velocity. Decreasing the velocity from a post-critical LCO position 

the system remains in a stable LCO branch down to a relative velocity U/Uc ≈ 0.85 for which 

hLCO /b ≈ 0.24 and αLCO ≈ 18 deg. For 0.85 < U/Uc < 1 the system, starting from rest, can also 

move toward a stable LCO if a significant perturbation is imposed.  

Those results clearly show that this two-degree-of-freedom pitch and plunge flat plate 

aeroelastic system is submitted to nonlinear effects. One may then wonder if structural 

nonlinearities, aerodynamic nonlinearities or both of them are responsible for this behaviour. 

Cubic structural nonlinearities in pitch/plunge aeroelastic wing were analytically studied by 

Woolston et al. (1955) and more recently by Lee and LeBlanc (1986). Using a linear 
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formulation for the aerodynamics, they both analyzed the effect of hard and soft cubic springs 

in the torsional degree of freedom on flutter boundaries and post critical behaviour. Results 

showed that a soft spring can affect the stability boundary of the system, i.e a high initial 

angle of attack can have a destabilizing effect and trigger the flutter. Meanwhile for a small 

nonlinear spring constant βα = -0.3, which is close to that of our system, Lee and LeBlanc 

(1986) found only a small deviation (≈1%) from the linear flutter boundary. Furthermore they 

only observed LCO for hard spring. From these results the soft spring cubic nonlinearity of 

our system (βα ≈ -0.25) should have a negligible impact on the flutter boundary results. On the 

other hand even though it can affect the post-critical response and the observed LCO 

amplitudes for pitching oscillations beyond ±25°, it cannot be responsible for the saturation 

mechanism.  

As in Price & Fragiskatos (2000) our system seems then to be mainly affected by nonlinear 

nature aerodynamic effects. Indeed it is interesting that the first saturation highlighted at the 

critical condition U=Uc occurs when the angle of rotation reach the static stall angle of attack 

(α ≈ 7-8 deg.). For higher velocity, the system branches off to higher and more stable LCO. 

Nonlinear dynamic stall conditions can then be responsible for the new saturation in 

amplitude but further investigations are needed to characterize the mechanisms involved.  

 

Acknowledgements 

 

The authors gratefully acknowledge Electricité de France (EDF) for their support through the 

‘Chaire Energies Durables’ at the Ecole polytechnique. S. M. was also supported by a Marie 

Curie International Reintegration Grant within the seventh European Community Framework 

Program.  

 

References 

 
Bisplinghoff, R.L., Ashley, H., 1962. Principles of aeroelasticity. John Wiley and Sons, Inc., 

New-York, N.Y. Also available in Dover Edition. 

 

Bhat, S.S., Govardhan, R.N., 2013. Stall flutter of NACA 0012 airfoil at low Reynolds 

numbers. Journal of Fluids and Structures 41, 166–174. 

 

Boragno, C., Festa, R., Mazzino, A., 2012. Elastically bounded flapping wing for energy 

harvesting. Applied Physics Letters 100, 253906 (2012). 



22 

 

Carr, L.W., McAlister, K.W., McCroskey, W.J., 1977. Analysis of the development of 

dynamic stall based on oscillating airfoil experiments. NASA-TN-D-8382. 

 

Conner, M.D., Tang, D.M., Dowell, E.H., Virgin, L.N., 1997. Nonlinear behavior of a typical 

airfoil section with control surface freeplay. Journal of Fluids and Structures 11(1), 89-109. 

 

Dowell, E., Edwards, J., Strganac, T.W., 2003. Nonlinear Aeroelasticity. AIAA Journal of 

Aircraft 40(5), 857-874. 

 

Dowell, E.H., Clark, R., Cox, D., Curtiss, H.C., Edwards, J.W., Peters, D.A., Scanlan, R., 

Simiu, E., Sisto, F., Hall, K.C. and others, 2004. A modern course in aeroelasticity. Ed. 

Kluwer, U.S.A. 

 

Dunn, P., Dugundji, J., 1992. Nonlinear stall flutter and divergence analysis of cantilevered 

graphite/epoxy wings. AIAA journal 30(1), 153-162. 

 

Ericsson, L.E., Reding, J.P., 1971. Unsteady Airfoil Stall and Stall Flutter. NASA, CR 

111906. 

 

Fung, Y.C., 1955. An introduction to the theory of aeroelasticity. John Wiley and Sons, Inc., 

New-York, N.Y. Also available in Dover Edition. 

 

Fage, A., Johansen, F.C., 1927. On the flow of air behind an inclined flat plate of infinite 

span, in Proceedings of the Royal Society of London 116(773) September, pp. 170-197. 

 

Ham, N.D., Young, M.I., 1966. Limit Cycle Torsional Motion of Helicopter Blades due to 

Stall. Journal of Sound and Vibration 4(3), 431–432. 

 

Hansen, M.O.L., Sørensen, J.N., Voutsinas, S., Sørensen, N., Madsen, H.Aa., 2006. State of 

the art in wind turbine aerodynamics and aeroelasticity. Progress in Aerospace Sciences 

42(4), 285-330. 

 

Li, J., Dimitriadis, G., 2007. Experimental Study of Stall Induced LCOS of Free-Vibrating 



23 

Wings. in Proceedings of the CEAS International Forum on Aeroelasticity and Structural 

Dynamics, Paper IF-026, Stockholm. 

 

Lee, B.H.K., Price, S.J., Wong, Y.S., 1999. Nonlinear aeroelastic analysis of airfoils: 

bifurcations and chaos. Progress in Aerospace Sciences 35, 205-334. 

 

Lee B.H.K., LeBlanc P., 1986. Flutter analysis of a two-dimensional airfoil with cubic 

nonlinear restoring force. Aeronautical Note NAE-AN-36, NRC No. 25438, National 

Research Council of Canada. 

 

McCroskey, W.J., Philippe, J.J., 1975. Unsteady viscous flow on oscillating airfoils. AIAA 

Journal 13(1), 71–79. 

 

McCroskey, W. J., 1982. Unsteady airfoils. Annual Review of Fluid Mechanics 14, 285–311. 

 

Naudascher, E. Rockwell, D., 1994. Flow-induced vibrations: An engineering guide. Ed. 

Balkema, Netherlands. 

 

Pelletier, A., Mueller, T.J., 2000. Low Reynolds number aerodynamics of low-aspect-ratio 

thin/flat/cambered-plate wings. Journal of Aircraft 37(5), 825-832. 

 

Peng, Z., Zhu, Q., 2009. Energy harvesting through flow-induced oscillations of a foil. 

Physics of Fluids 21, 123602. 

 

Price, S.J., Fragiskatos, G., 2000. Nonlinear aeroelastic response of a two-degree-of-freedom 

airfoil oscillating in dynamic stall, in: Ziada, S., Staubli, T. (Eds.), Proceedings of the Seventh 

International Conference on Flow Induced Vibration, Rotterdam, The Netherlands, pp. 437–

444. 

 

Razak, N.A., Andrianne, T., Dimitriadis, G., 2011. Flutter and stall flutter of a rectangular 

wing in a wind tunnel. AIAA Journal 49(10), 2258-2271. 

 

Sarkar, S., Bijl, H., 2008. Nonlinear aeroelastic behavior of an oscillating airfoil during stall 

induced vibration. Journal of Fluids and Structures 24,757-777. 



24 

 

Sears, W. R., 1941. Some aspects of non-stationary airfoil theory and its practical application. 

Journal of the Aeronautical Sciences 8, 104-108. 

 

Schewe, G., Mai, H., Dietz, G., 2003. Nonlinear effects in transonic flutter with emphasis on 

manifestations of limit cycle oscillations. Journal of Fluids and Structures 18, 3–22. 

 

Theodorsen, T., 1935. General Theory of aerodynamic instability and the mechanism of 

flutter. NACA Technical Report 496. (also available in ‘A modern view of Theodore 

Theodorsen’, published by AIAA in 1992.) 

 

Victory, M., 1943. Flutter at High Incidence. Aeronautical Research Committee, Reports and 

Memoranda No. 2048. 

 

Woolston D.S., Runyan H.L., Byrdsong T.A., 1955. Some effects of system nonlinearities in 

the problem of aircraft flutter. NACA TN 3539. 

 

Zhu, Q., 2012. Energy harvesting by a purely passive flapping foil from shear flow. Journal of 

Fluids and Structures 34,157-169. 

 


